R/ml_feature_r_formula.R

Defines functions validator_ml_r_formula new_ml_r_formula_model new_ml_r_formula ft_r_formula.tbl_spark ft_r_formula.ml_pipeline ft_r_formula.spark_connection ft_r_formula

Documented in ft_r_formula

#' Feature Transformation -- RFormula (Estimator)
#'
#' Implements the transforms required for fitting a dataset against an R model
#'   formula. Currently we support a limited subset of the R operators,
#'   including \code{~}, \code{.}, \code{:}, \code{+}, and \code{-}. Also see the R formula docs here:
#'   \url{http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html}
#'
#' @details The basic operators in the formula are:
#'
#'   \itemize{
#'     \item ~ separate target and terms
#'     \item + concat terms, "+ 0" means removing intercept
#'     \item - remove a term, "- 1" means removing intercept
#'     \item : interaction (multiplication for numeric values, or binarized categorical values)
#'     \item . all columns except target
#'   }
#'
#'   Suppose a and b are double columns, we use the following simple examples to illustrate the
#'   effect of RFormula:
#'
#'   \itemize{
#'     \item \code{y ~ a + b} means model \code{y ~ w0 + w1 * a + w2 * b}
#'       where \code{w0} is the intercept and \code{w1, w2} are coefficients.
#'     \item \code{y ~ a + b + a:b - 1} means model \code{y ~ w1 * a + w2 * b + w3 * a * b}
#'       where \code{w1, w2, w3} are coefficients.
#'   }
#'
#'  RFormula produces a vector column of features and a double or string column
#'  of label. Like when formulas are used in R for linear regression, string
#'  input columns will be one-hot encoded, and numeric columns will be cast to
#'  doubles. If the label column is of type string, it will be first transformed
#'  to double with StringIndexer. If the label column does not exist in the
#'  DataFrame, the output label column will be created from the specified
#'  response variable in the formula.
#'
#' @template roxlate-ml-feature-transformer
#' @template roxlate-ml-feature-estimator-transformer
#' @template roxlate-ml-features-col
#' @template roxlate-ml-label-col
#'
#' @param formula R formula as a character string or a formula. Formula objects are
#'   converted to character strings directly and the environment is not captured.
#' @param force_index_label (Spark 2.1.0+) Force to index label whether it is numeric or
#'   string type. Usually we index label only when it is string type. If
#'   the formula was used by classification algorithms, we can force to index
#'   label even it is numeric type by setting this param with true.
#'   Default: \code{FALSE}.
#'
#' @export
ft_r_formula <- function(x, formula = NULL, features_col = "features", label_col = "label",
                         force_index_label = FALSE,
                         uid = random_string("r_formula_"), ...) {
  check_dots_used()
  UseMethod("ft_r_formula")
}

ml_r_formula <- ft_r_formula

#' @export
ft_r_formula.spark_connection <- function(x, formula = NULL, features_col = "features", label_col = "label",
                                          force_index_label = FALSE,
                                          uid = random_string("r_formula_"), ...) {
  .args <- list(
    formula = formula,
    features_col = features_col,
    label_col = label_col,
    force_index_label = force_index_label,
    uid = uid
  ) %>%
    c(rlang::dots_list(...)) %>%
    validator_ml_r_formula()

  estimator <- invoke_new(x, "org.apache.spark.ml.feature.RFormula", .args[["uid"]]) %>%
    invoke("setFeaturesCol", .args[["features_col"]]) %>%
    jobj_set_param("setFormula", .args[["formula"]]) %>%
    invoke("setLabelCol", .args[["label_col"]]) %>%
    jobj_set_param("setForceIndexLabel", .args[["force_index_label"]], "2.1.0", FALSE) %>%
    new_ml_r_formula()

  estimator
}

#' @export
ft_r_formula.ml_pipeline <- function(x, formula = NULL, features_col = "features", label_col = "label",
                                     force_index_label = FALSE,
                                     uid = random_string("r_formula_"), ...) {
  stage <- ft_r_formula.spark_connection(
    x = spark_connection(x),
    formula = formula,
    features_col = features_col,
    label_col = label_col,
    force_index_label = force_index_label,
    uid = uid,
    ...
  )
  ml_add_stage(x, stage)
}

#' @export
ft_r_formula.tbl_spark <- function(x, formula = NULL, features_col = "features", label_col = "label",
                                   force_index_label = FALSE,
                                   uid = random_string("r_formula_"), ...) {
  stage <- ft_r_formula.spark_connection(
    x = spark_connection(x),
    formula = formula,
    features_col = features_col,
    label_col = label_col,
    force_index_label = force_index_label,
    uid = uid,
    ...
  )

  if (is_ml_transformer(stage)) {
    ml_transform(stage, x)
  } else {
    ml_fit_and_transform(stage, x)
  }
}

new_ml_r_formula <- function(jobj) {
  new_ml_estimator(jobj, class = "ml_r_formula")
}

new_ml_r_formula_model <- function(jobj) {
  new_ml_transformer(jobj,
    formula = possibly_null(
      ~ jobj %>%
        invoke("parent") %>%
        invoke("getFormula")
    )(),
    class = "ml_r_formula_model"
  )
}

# Validator

validator_ml_r_formula <- function(.args) {
  if (rlang::is_formula(.args[["formula"]])) {
    .args[["formula"]] <- rlang::expr_text(.args[["formula"]], width = 500L)
  }
  .args[["formula"]] <- cast_nullable_string(.args[["formula"]])
  .args[["features_col"]] <- cast_string(.args[["features_col"]])
  .args[["label_col"]] <- cast_string(.args[["label_col"]])
  .args[["force_index_label"]] <- cast_scalar_logical(.args[["force_index_label"]])
  .args
}

Try the sparklyr package in your browser

Any scripts or data that you put into this service are public.

sparklyr documentation built on Jan. 8, 2022, 5:06 p.m.