R/ml_fpm_fpgrowth.R

Defines functions ml_freq_itemsets ml_association_rules new_ml_fpgrowth_model new_ml_fpgrowth validator_ml_fpgrowth ml_fpgrowth.tbl_spark ml_fpgrowth.ml_pipeline ml_fpgrowth.spark_connection ml_fpgrowth

Documented in ml_association_rules ml_fpgrowth ml_freq_itemsets

#' Frequent Pattern Mining -- FPGrowth
#'
#' A parallel FP-growth algorithm to mine frequent itemsets.
#'
#' @template roxlate-ml-x
#' @param items_col Items column name. Default: "items"
#' @param min_confidence Minimal confidence for generating Association Rule.
#'   \code{min_confidence} will not affect the mining for frequent itemsets, but
#'   will affect the association rules generation. Default: 0.8
#' @param min_support Minimal support level of the frequent pattern. [0.0, 1.0].
#'   Any pattern that appears more than (min_support * size-of-the-dataset) times
#'    will be output in the frequent itemsets. Default: 0.3
#' @template roxlate-ml-prediction-col
#' @template roxlate-ml-uid
#' @template roxlate-ml-dots
#' @name ml_fpgrowth
#' @export
ml_fpgrowth <- function(x, items_col = "items", min_confidence = 0.8,
                        min_support = 0.3, prediction_col = "prediction",
                        uid = random_string("fpgrowth_"), ...) {
  check_dots_used()
  UseMethod("ml_fpgrowth")
}

#' @export
ml_fpgrowth.spark_connection <- function(x, items_col = "items", min_confidence = 0.8,
                                         min_support = 0.3, prediction_col = "prediction",
                                         uid = random_string("fpgrowth_"), ...) {
  .args <- list(
    items_col = items_col,
    min_confidence = min_confidence,
    min_support = min_support,
    prediction_col = prediction_col
  ) %>%
    c(rlang::dots_list(...)) %>%
    validator_ml_fpgrowth()

  uid <- cast_string(uid)
  jobj <- invoke_new(x, "org.apache.spark.ml.fpm.FPGrowth", uid) %>%
    invoke(
      "%>%",
      list("setItemsCol", .args[["items_col"]]),
      list("setMinConfidence", .args[["min_confidence"]]),
      list("setMinSupport", .args[["min_support"]]),
      list("setPredictionCol", .args[["prediction_col"]])
    )

  new_ml_fpgrowth(jobj)
}

#' @export
ml_fpgrowth.ml_pipeline <- function(x, items_col = "items", min_confidence = 0.8,
                                    min_support = 0.3, prediction_col = "prediction",
                                    uid = random_string("fpgrowth_"), ...) {
  stage <- ml_fpgrowth.spark_connection(
    x = spark_connection(x),
    items_col = items_col,
    min_confidence = min_confidence,
    min_support = min_support,
    prediction_col = prediction_col,
    uid = uid,
    ...
  )
  ml_add_stage(x, stage)
}

#' @export
ml_fpgrowth.tbl_spark <- function(x, items_col = "items", min_confidence = 0.8,
                                  min_support = 0.3, prediction_col = "prediction",
                                  uid = random_string("fpgrowth_"), ...) {
  stage <- ml_fpgrowth.spark_connection(
    x = spark_connection(x),
    items_col = items_col,
    min_confidence = min_confidence,
    min_support = min_support,
    prediction_col = prediction_col,
    uid = uid,
    ...
  )

  stage %>%
    ml_fit(x)
}

# Validator
validator_ml_fpgrowth <- function(.args) {
  .args[["items_col"]] <- cast_string(.args[["items_col"]])
  .args[["min_confidence"]] <- cast_scalar_double(.args[["min_confidence"]])
  .args[["min_support"]] <- cast_scalar_double(.args[["min_support"]])
  .args[["prediction_col"]] <- cast_string(.args[["prediction_col"]])
  .args
}

new_ml_fpgrowth <- function(jobj) {
  new_ml_estimator(jobj, class = "ml_fpgrowth")
}

new_ml_fpgrowth_model <- function(jobj) {
  new_ml_transformer(
    jobj,
    # def
    association_rules = function() {
      invoke(jobj, "associationRules") %>%
        sdf_register()
    },
    freq_itemsets = invoke(jobj, "freqItemsets") %>%
      sdf_register(),
    class = "ml_fpgrowth_model"
  )
}

#' @rdname ml_fpgrowth
#' @param model A fitted FPGrowth model returned by \code{ml_fpgrowth()}
#' @export
ml_association_rules <- function(model) {
  model$association_rules()
}

#' @rdname ml_fpgrowth
#' @export
ml_freq_itemsets <- function(model) {
  model$freq_itemsets
}

Try the sparklyr package in your browser

Any scripts or data that you put into this service are public.

sparklyr documentation built on Jan. 8, 2022, 5:06 p.m.