R/spark_schema_from_rdd.R

Defines functions spark_schema_from_rdd

#' @include spark_data_build_types.R

# nocov start

spark_schema_from_rdd <- function(sc, rdd, column_names) {
  columns_typed <- length(names(column_names)) > 0

  if (columns_typed) {
    schema <- spark_data_build_types(sc, column_names)
    return(schema)
  }

  sampleRows <- rdd %>% invoke(
    "take",
    cast_scalar_integer(
      spark_config_value(sc$config, "sparklyr.apply.schema.infer", 10)
    )
  )

  map_special_types <- list(
    date = "date",
    posixct = "timestamp",
    posixt = "timestamp"
  )

  colTypes <- NULL
  lapply(sampleRows, function(r) {
    row <- r %>% invoke("toSeq")

    if (is.null(colTypes)) {
      colTypes <<- replicate(length(row), "character")
    }

    lapply(seq_along(row), function(colIdx) {
      colVal <- row[[colIdx]]
      lowerClass <- tolower(class(colVal)[[1]])
      if (lowerClass %in% names(map_special_types)) {
        colTypes[[colIdx]] <<- map_special_types[[lowerClass]]
      } else if (!is.na(colVal) && !is.null(colVal)) {
        colTypes[[colIdx]] <<- typeof(colVal)
      }
    })
  })

  if (any(sapply(colTypes, is.null))) {
    stop("Failed to infer column types, please use explicit types.")
  }

  fields <- lapply(seq_along(colTypes), function(idx) {
    name <- if (idx <= length(column_names)) {
      column_names[[idx]]
    } else {
      paste0("X", idx)
    }

    invoke_static(
      sc,
      "sparklyr.SQLUtils",
      "createStructField",
      name,
      colTypes[[idx]],
      TRUE
    )
  })

  invoke_static(
    sc,
    "sparklyr.SQLUtils",
    "createStructType",
    fields
  )
}

# nocov end

Try the sparklyr package in your browser

Any scripts or data that you put into this service are public.

sparklyr documentation built on Jan. 8, 2022, 5:06 p.m.