Nothing
svyttest<-function(formula, design,...) UseMethod("svyttest",design)
svyttest.default<-function(formula, design, ...){
if (formula[[3]]==1 || formula[[3]]==0){
## one-sample
tt <- eval(bquote(svymean(~as.numeric(.(formula[[2]])),design,...)))
rval<-list(statistic=coef(tt)[1]/SE(tt)[1],
parameter=degf(design)-1,
estimate=coef(tt)[1],
null.value=0,
alternative="two.sided",
method="Design-based one-sample t-test",
data.name=deparse(formula))
rval$p.value<-2*pt(-abs(rval$statistic),df=rval$parameter)
ci <- confint(tt,level=0.95,df=rval$parameter)
attr(ci,"conf.level")<-0.95
rval$conf.int<-ci
names(rval$statistic)<-"t"
names(rval$parameter)<-"df"
names(rval$estimate)<-"mean"
names(rval$null.value)<-"mean"
class(rval)<-c("svyttest","htest")
} else {
## two-sample
m <- eval(bquote(svyglm(formula,design, family=gaussian())))
mm<-model.matrix(m)
if( (ncol(mm)!=2) || (any(!(mm[,2] %in% c(0,1))) && any(!(mm[,2] %in% c(1,2)))))
stop("group must be binary")
rval<-list(statistic=coef(m)[2]/SE(m)[2],
parameter=m$df.resid,
estimate=coef(m)[2],
null.value=0,
alternative="two.sided",
method="Design-based t-test",
data.name=deparse(formula))
rval$p.value<-2*pt(-abs(rval$statistic),df=rval$parameter)
ci <- confint(m,parm=2)
attr(ci,"conf.level")<-0.95
rval$conf.int<-ci
names(rval$statistic)<-"t"
names(rval$parameter)<-"df"
names(rval$estimate)<-"difference in mean"
names(rval$null.value)<-"difference in mean"
class(rval)<-c("svyttest","htest")
}
return(rval)
}
confint.svyttest<-function(object, parm, level=0.95,...){
if(level==0.95)
return(object$conf.int)
halfw<-diff(as.vector(object$conf.int))/2
q95<-qt(0.975,df=object$parameter)
qthis<-qt(1-(1-level)/2, df=object$parameter)
thishalfw<-halfw*qthis/q95
rval<-object$estimate+c(-thishalfw,thishalfw)
attr(rval,"conf.level")<-level
rval
}
expit<-function(eta) exp(eta)/(1+exp(eta))
svyciprop<-function(formula, design, method=c("logit","likelihood","asin","beta","mean","xlogit"),
level=0.95,df=degf(design),...) {
method<-match.arg(method)
if (method=="mean"){
m<-eval(bquote(svymean(~as.numeric(.(formula[[2]])),design,...)))
ci<-as.vector(confint(m,1,level=level,df=df,...))
rval<-coef(m)[1]
attr(rval,"var")<-vcov(m)
} else if (method=="asin"){
m<-eval(bquote(svymean(~as.numeric(.(formula[[2]])),design,...)))
names(m)<-1
xform<-svycontrast(m,quote(asin(sqrt(`1`))))
ci<-sin(as.vector(confint(xform,1,level=level,df=df,...)))^2
rval<-coef(m)[1]
attr(rval,"var")<-vcov(m)
} else if (method=="xlogit"){
m<-eval(bquote(svymean(~as.numeric(.(formula[[2]])),design,...)))
names(m)<-1
xform<-svycontrast(m,quote(log(`1`/(1-`1`))))
ci<-expit(as.vector(confint(xform,1,level=level,df=df,...)))
rval<-coef(m)[1]
attr(rval,"var")<-vcov(m)
} else if (method=="beta"){
m<-eval(bquote(svymean(~as.numeric(.(formula[[2]])),design,...)))
n.eff <- coef(m)*(1-coef(m))/vcov(m)
rval<-coef(m)[1]
attr(rval,"var")<-vcov(m)
alpha<-1-level
n.eff<-n.eff*( qt(alpha/2, nrow(design)-1)/qt(alpha/2, degf(design)) )^2
ci<-c(qbeta(alpha/2, n.eff*rval,n.eff*(1-rval)+1),
qbeta(1-alpha/2, n.eff*rval+1, n.eff*(1-rval)))
} else {
m<-eval(bquote(svyglm(.(formula[[2]])~1,design, family=quasibinomial)))
cimethod<-switch(method, logit="Wald",likelihood="likelihood")
ci<-suppressMessages(as.numeric(expit(confint(m,1,level=level,method=cimethod,ddf=df))))
rval<-expit(coef(m))[1]
attr(rval,"var")<-vcov(eval(bquote(svymean(~as.numeric(.(formula[[2]])),design,...))))
}
halfalpha<-(1-level)/2
names(ci)<-paste(round(c(halfalpha,(1-halfalpha))*100,1),"%",sep="")
names(rval)<-paste(deparse(formula[[2]]), collapse="")
attr(rval,"ci")<-ci
class(rval)<-"svyciprop"
rval
}
confint.svyciprop<-function(object,parm,level=NULL,...){
if (!is.null(level)) stop("need to re-run svyciprop to specify level")
rval<-t(as.matrix(attr(object,"ci")))
rownames(rval)<-names(object)
rval
}
coef.svyciprop<-function(object,...) object
vcov.svyciprop<-function(object,...) attr(object,"var")
print.svyciprop<-function(x,digits=max(3,getOption("digits")-4),...){
m <- cbind(coef(x), confint(x))
printCoefmat(m,digits=digits, cs.ind=1:3,tst.ind=NULL)
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.