R/plot-plot_sem.R

Defines functions bind_list reposition_variances .plot_label_internal .plot_edges_internal .plot_edges .determine_connections .plot_nodes .plot_variances match.call.defaults .manhattan_distance .euclidean_distance get_edges.tidy_results get_edges.lavaan get_edges.default get_edges get_nodes.tidy_results get_nodes.default get_nodes.lavaan get_nodes matrix_to_nodes .connect_points plot.sem_graph prepare_graph_model prepare_graph.character prepare_graph.lavaan prepare_graph.default prepare_graph graph_model graph_sem.character graph_sem.lavaan graph_sem.default graph_sem edit_graph.data.frame edit_edges edit_nodes edit_graph.sem_graph edit_graph filter_graph.sem_graph filter_graph

Documented in edit_edges edit_graph edit_nodes get_edges get_nodes graph_sem graph_sem.character graph_sem.default graph_sem.lavaan prepare_graph prepare_graph.character prepare_graph.default prepare_graph.lavaan

# @title Filter graph elements
# @description Apply a filter to one of the elements
# of a \code{sem_graph} object, and return the modified \code{sem_graph}. Uses
# the function \code{\link{subset}}.
# @param x An object of class \code{sem_graph}.
# @param subset logical expression indicating elements or rows to keep:
# missing values are taken as false.
# @param select Expression, indicating columns to select from a data frame.
# @param element Character. The element of the \code{sem_graph} to filter,
# defaults to \code{"edges"}.
# @param ... Arguments passed on to \code{\link{within}}.
# @return An object of class \code{sem_graph}.
# @examples
# library(lavaan)
# res <- sem("Sepal.Length ~ Petal.Length + Petal.Width", iris)
# p <- filter_graph(p, !arrow == "none")
# plot(p)

# @rdname filter_graph
# @export
filter_graph <- function(x, subset, select, element = "edges", ...){
  UseMethod("filter_graph", x)
}

# @method filter_graph sem_graph
# @export
filter_graph.sem_graph <- function(x, subset, select, element = "edges", ...){
  if(!element %in% names(x)){
    stop("Element ", element, " is not an element of the sem_graph object.", call. = FALSE)
  }
  Args <- as.list(match.call())
  Args$x <- x[[element]]
  Args[[1]] <- as.symbol("subset")
  x[[element]] <- eval.parent(as.call(Args))
  x
}

#' @title Edit graph elements
#' @description Evaluate an R expression within the environment of the elements
#' of a \code{sem_graph} object, and return the modified \code{sem_graph}.
#' @param x An object of class \code{sem_graph}.
#' @param expr expression to evaluate.
#' @param element Character. The element of the \code{sem_graph} to edit,
#' defaults to \code{c("edges", "nodes")}.
#' @param ... Arguments passed on to \code{\link{within}}.
#' @return An object of class \code{sem_graph}.
#' @examples
#' p <- prepare_graph(layout = get_layout("x", rows = 1))
#' p <- edit_graph(p, {colour = "blue"}, element = "nodes")
#' plot(p)
#' @rdname edit_graph
#' @export
edit_graph <- function(x, expr, element = c("edges", "nodes"), ...){
  UseMethod("edit_graph", x)
}

#' @method edit_graph sem_graph
#' @export
edit_graph.sem_graph <- function(x, expr, element = c("edges", "nodes"), ...){
  if(!all(element %in% names(x))){
    stop("Element ", element[!element %in% names(x)], " is not an element of the sem_graph object.", call. = FALSE)
  }
  cl <- match.call()
  for(el in element){
    cl[[1L]] <- quote(edit_graph)
    cl[["x"]] <- x[[el]]
    cl <- cl[c(1, match(c("x", "expr"), names(cl)))]
    x[[el]] <- eval.parent(cl)
  }
  x
}

#' @rdname edit_graph
#' @export
edit_nodes <- function(x, expr, ...){
  cl <- match.call()
  cl[[1L]] <- quote(edit_graph)
  cl[["element"]] <- "nodes"
  eval.parent(cl)
}

#' @rdname edit_graph
#' @export
edit_edges <- function(x, expr, ...){
  cl <- match.call()
  cl[[1L]] <- quote(edit_graph)
  cl[["element"]] <- "edges"
  eval.parent(cl)
}

#' @method edit_graph data.frame
#' @export
edit_graph.data.frame <- function(x, expr, ...){
  cl <- match.call()
  cl[[1L]] <- quote(within)
  names(cl)[names(cl) == "x"] <- "data"
  eval.parent(cl)
}



#' @title Render a graph
#' @description Render a graph based on a layout, and either nodes and edges, or
#' a model object.
#' @param ... Additional arguments passed to and from functions.
#@usage ## Default S3 method:
#graph_sem(edges, layout, nodes = NULL,  rect_width = 1.2, rect_height = .8,
#  ellipses_width = 1, ellipses_height = 1, spacing_x = 2, spacing_y = 2,
#  text_size = 4, curvature = 60, angle = NULL, ...)
#
### Alternative interface:
#graph_sem(model, layout, ...)
# Default: "euclidean", but could be set to "manhattan".
#' @return Object of class 'sem_graph'
#' @details The default interface simply Runs the functions
#' \code{\link[tidySEM]{prepare_graph}} and
#' \code{plot}. The alternative interface first runs
#' \code{\link[tidySEM]{get_nodes}} and \code{\link[tidySEM]{get_edges}} on
#' the \code{model} argument.
#' @examples
#' library(lavaan)
#' res <- sem("dist ~ speed", cars)
#' graph_sem(res)
#' @rdname graph_sem
#' @keywords tidy_graph
#' @export
graph_sem <- function(...){
  UseMethod("graph_sem")
}

#' @method graph_sem default
#' @param edges Object of class 'tidy_edges', or a \code{data.frame} with  (at
#' least) the columns \code{c("from", "to")}, and optionally, \code{c("arrow",
#' "label", "connect_from", "connect_to", "curvature")}.
#' @param layout A matrix (or data.frame) that describes the layout; see
#' \code{\link[tidySEM]{get_layout}}.
#' @param nodes Optional, object of class 'tidy_nodes', created with the
#' \code{\link[tidySEM]{get_nodes}} function, or a \code{data.frame} with (at
#' least) the column \code{c("name")}, and optionally, \code{c("shape",
#' "label")}. If set to \code{NULL} (the default), nodes are inferred from the
#' \code{layout} and \code{edges} arguments.
#' @param rect_width Width of rectangles (used to display observed variables),
#' Default: 1.2
#' @param rect_height Height of rectangles (used to display observed variables),
#' Default: 0.8
#' @param ellipses_width Width of ellipses (used to display latent variables),
#' Default: 1
#' @param ellipses_height Height of ellipses (used to display latent variables),
#' Default: 1
#' @param variance_diameter Diameter of variance circles,
#' Default: .8
#' @param spacing_x Spacing between columns of the graph, Default: 1
#' @param spacing_y Spacing between rows of the graph, Default: 1
#' @param text_size Point size of text, Default: 4
#' @param curvature Curvature of curved edges. The curve is a circle segment
#' originating in a point that forms a triangle with the two connected points,
#' with angles at the two connected points equal to \code{curvature}.
#' To flip a curved edge, use a negative value for curvature. Default: 60
#' @param angle Angle used to connect nodes by the top and bottom. Defaults to
#' NULL, which means Euclidean distance is used to determine the shortest
#' distance between node sides. A numeric value between 0-180 can be provided,
#' where 0 means that only nodes with the same x-coordinates are connected
#' top-to-bottom, and 180 means that all nodes are connected top-to-bottom.
#' @param fix_coord Whether or not to fix the aspect ratio of the graph.
#' Does not work with multi-group or multilevel models.
#' Default: FALSE.
#' @rdname graph_sem
#' @export
graph_sem.default <- function(edges = NULL,
                              layout = NULL,
                              nodes = NULL,
                              rect_width = 1.2,
                              rect_height = .8,
                              ellipses_width = 1,
                              ellipses_height = 1,
                              variance_diameter = .8,
                              spacing_x = 2,
                              spacing_y = 2,
                              text_size = 4,
                              curvature = 60,
                              angle = NULL,
                              fix_coord = FALSE,
                              ...){
  cl <- match.call()

  cl[[1L]] <- quote(prepare_graph)
  prep <- eval.parent(cl)
  plot(prep)
}

#' @method graph_sem lavaan
#' @param model Instead of the edges argument, it is also possible to use the
#' model argument and pass an object for which a method exists (e.g.,
#' \code{mplus.model} or \code{lavaan}).
# @param label Character, indicating which column to use for node labels. Nodes
# are labeled with mean values of the observed/latent variables they represent.
# Defaults to 'est_sig', which consists of the estimate value with significance
# asterisks.
#' @rdname graph_sem
#' @export
graph_sem.lavaan <- function(model,
                             edges = NULL,
                             layout = NULL,
                             nodes = NULL,
                             ...){
  cl <- match.call()
  cl[[1]] <- quote(prepare_graph)
  prep <- eval.parent(cl)
  return(plot(prep))
}

#' @method graph_sem MxModel
#' @rdname graph_sem
#' @export
graph_sem.MxModel <- graph_sem.lavaan

#' @method graph_sem mplus.model
#' @rdname graph_sem
#' @export
graph_sem.mplus.model <- graph_sem.lavaan

#' @method graph_sem character
#' @rdname graph_sem
#' @export
graph_sem.character <- function(...){
  cl <- match.call()
  cl_list <- as.list(cl)
  if(isTRUE("model" %in% names(cl))){
    if(inherits(cl_list[["model"]], "matrix")) cl[[1L]] <- str2lang("tidySEM:::graph_sem.default")
    if(inherits(cl_list[["model"]], "character")) cl[[1L]] <- str2lang("tidySEM:::graph_sem.lavaan")
  } else {
    if(any(c("layout", "edges", "nodes") %in% names(cl))){
      cl[[1L]] <- str2lang("tidySEM:::graph_sem.default")
    } else {
      if(inherits(cl_list[[2L]], "matrix")) cl[[1L]] <- str2lang("tidySEM:::graph_sem.default")
      if(inherits(cl_list[[2L]], "character")) cl[[1L]] <- str2lang("tidySEM:::graph_sem.lavaan")
    }
  }
  #if(names(cl)[2L] == "model") cl[[1L]] <- str2lang("tidySEM:::graph_sem.lavaan")
  eval.parent(cl)
}


#' @method graph_sem mplusObject
#' @rdname graph_sem
#' @export
graph_sem.mplusObject <- graph_sem.lavaan

graph_model <- function(model, ...) {
  Args <- as.list(match.call()[-1])
  call_args <- list(x = model,
                    label = Args$label)
  if(!"edges" %in% names(Args)){
    edges <- do.call(get_edges, call_args)
    Args$edges <- edges
  }
  if(!"nodes" %in% names(Args)){
    nodes <- do.call(get_nodes, call_args)
    Args$nodes <- nodes
  }
  if(!"layout" %in% names(Args)){
    layout <- do.call(get_layout, call_args)
    Args$layout <- layout
  }
  Args[["model"]] <- NULL
  do.call(graph_sem.default, Args)
}

#' @title Prepare graph data
#' @description Prepare an object of class \code{sem_graph}, containing
#' data objects that can be rendered into a SEM graph. Using this function
#' allows
#' users to manually change the default graph specification before plotting it.
#' Input consists of (at least) a layout, and either nodes and edges, or
#' a model object.
#' @param ... Additional arguments passed to and from functions.
# @usage ## Default S3 method:
# prepare_graph(edges, layout, nodes = NULL,  rect_width = 1.2,
#   rect_height = .8, ellipses_width = 1, ellipses_height = 1, spacing_x = 2,
#   spacing_y = 2, text_size = 4, curvature = 60, angle = NULL, ...)
#
# ## Alternative interface:
# prepare_graph(model, layout, ...)
# Default: "euclidean", but could be set to "manhattan".
# Default: "euclidean", but could be set to "manhattan".
#' @return Object of class 'sem_graph'
#' @examples
#' library(lavaan)
#' res <- sem("dist ~ speed", cars)
#' prepare_graph(res)
#' @rdname prepare_graph
#' @export
prepare_graph <- function(...){
  UseMethod("prepare_graph")
}

#' @method prepare_graph default
#' @param edges Object of class 'tidy_edges', or a \code{data.frame} with  (at
#' least) the columns \code{c("from", "to")}, and optionally, \code{c("arrow",
#' "label", "connect_from", "connect_to", "curvature")}.
#' @param layout A matrix (or data.frame) that describes the layout; see
#' \code{\link[tidySEM]{get_layout}}.
#' @param nodes Optional, object of class 'tidy_nodes', created with the
#' \code{\link[tidySEM]{get_nodes}} function, or a \code{data.frame} with (at
#' least) the column \code{c("name")}, and optionally, \code{c("shape",
#' "label")}. If set to \code{NULL} (the default), nodes are inferred from the
#' \code{layout} and \code{edges} arguments.
#' @param rect_width Width of rectangles (used to display observed variables),
#' Default: 1.2
#' @param rect_height Height of rectangles (used to display observed variables),
#' Default: 0.8
#' @param ellipses_width Width of ellipses (used to display latent variables),
#' Default: 1
#' @param ellipses_height Height of ellipses (used to display latent variables),
#' Default: 1
#' @param variance_diameter Diameter of variance circles,
#' Default: .8
#' @param spacing_x Spacing between columns of the graph, Default: 1
#' @param spacing_y Spacing between rows of the graph, Default: 1
#' @param text_size Point size of text, Default: 4
#' @param curvature Curvature of curved edges. The curve is a circle segment
#' originating in a point that forms a triangle with the two connected points,
#' with angles at the two connected points equal to \code{curvature}.
#' To flip a curved edge, use a negative value for curvature. Default: 60
#' @param angle Angle used to connect nodes by the top and bottom. Defaults to
#' NULL, which means Euclidean distance is used to determine the shortest
#' distance between node sides. A numeric value between 0-180 can be provided,
#' where 0 means that only nodes with the same x-coordinates are connected
#' top-to-bottom, and 180 means that all nodes are connected top-to-bottom.
#' @param fix_coord Whether or not to fix the aspect ratio of the graph.
#' Does not work with multi-group or multilevel models.
#' Default: FALSE.
#' @rdname prepare_graph
#' @export
prepare_graph.default <- function(edges = NULL,
                                  layout = NULL,
                                  nodes = NULL,
                                  rect_width = 1.2,
                                  rect_height = .8,
                                  ellipses_width = 1,
                                  ellipses_height = 1,
                                  variance_diameter = .8,
                                  spacing_x = 2,
                                  spacing_y = 2,
                                  text_size = 4,
                                  curvature = 60,
                                  angle = NULL,
                                  fix_coord = FALSE,
                                  ...
){
  Args <- as.list(match.call())[-1]
  myfor <- formals(prepare_graph.default)
  for ( v in names(myfor)){
    if (!(v %in% names(Args)))
      Args <- append(Args,myfor[v])
  }

  # Check if nodes exist in edges and layout --------------------------------
  if(inherits(layout, c("matrix", "data.frame"))){
    layout <- long_layout(layout)
    if(any(duplicated(layout$name))){
      stop("Some nodes are duplicated in the layout. The offending node names are: ", paste0(unique(layout$name[duplicated(layout$name)]), collapse = ", "))
    }
    Args$layout <- layout
  } else {
    stop("Argument 'layout' must be a matrix or data.frame.")
  }
  if(!is.null(edges)){
    df_edges <- edges
  } else {
    df_edges <- data.frame(from = character(),
                           to = character())
  }

  fac_vars <- sapply(df_edges, inherits, what = "factor")
  if(any(fac_vars)){
    df_edges[which(fac_vars)] <- lapply(df_edges[which(fac_vars)], as.character)
  }
  fac_vars <- sapply(layout, inherits, what = "factor")
  if(any(fac_vars)){
    layout[which(fac_vars)] <- lapply(layout[which(fac_vars)], as.character)
  }
  if(!("from" %in% names(df_edges) & "to" %in% names(df_edges))){
    stop("Argument 'edges' must have columns 'from' and 'to'.")
  }

  if(!all((df_edges$from %in% layout$name) & (df_edges$to %in% layout$name))){
    message("Some edges involve nodes not in layout. These were dropped.")
    df_edges <- df_edges[(df_edges$from %in% layout$name) & (df_edges$to %in% layout$name), ]
  }

  # Infer nodes if argument is null -----------------------------------------

  if(is.null(nodes)){
    nodes <- data.frame(name = unique(c("", NA, unlist(layout), df_edges$from, df_edges$to))[-c(1:2)])
    nodes$shape <- "rect"
    nodes$label <- nodes$name
  }
  fac_vars <- sapply(nodes, inherits, what = "factor")
  if(any(fac_vars)){
    nodes[which(fac_vars)] <- lapply(nodes[which(fac_vars)], as.character)
  }

  # Check edges df ----------------------------------------------------------

  if(nrow(df_edges)){
    if(!"arrow" %in% names(df_edges)){
      df_edges$arrow <- "last"
    }
    if(!"label" %in% names(df_edges)){
      df_edges$label <- ""
    }
    if(!"connect_from" %in% names(df_edges)){
      df_edges$connect_from <- "left"
    }
    if(!"connect_to" %in% names(df_edges)){
      df_edges$connect_to <- "right"
    }
    if(!"curvature" %in% names(df_edges)){
      df_edges$curvature <- NA
    }
  }

  # Defaults for missing columns --------------------------------------------

  if(!("name" %in% names(nodes) & "name" %in% names(layout))){
    stop("Arguments 'nodes' and 'layout' must both have a 'name' column.")
  }
  df_nodes <- merge(nodes, layout, by = "name")
  if(!"label" %in% names(df_nodes)){
    df_nodes$label <- df_nodes$name
  }
  if(!"shape" %in% names(df_nodes)){
    df_nodes$shape <- "rect"
  }
  if("group" %in% names(df_edges) & !"group" %in% names(df_nodes)){
    df_nodes <- do.call(rbind, lapply(unique(df_edges$group), function(this_group){
      df_nodes$group <- this_group
      df_nodes
    }))
  }
  if("group" %in% names(df_nodes) & !"group" %in% names(df_edges)){
    df_edges <- do.call(rbind, lapply(unique(df_nodes$group), function(this_group){
      df_edges$group <- this_group
      df_edges
    }))
  }

  # Order nodes and edges ---------------------------------------------------
  if("group" %in% names(df_edges)){
    if("level" %in% names(df_edges)){
      df_edges <- df_edges[with(df_edges, order(group, level)), ]
    } else {
      df_edges <- df_edges[with(df_edges, order(group)), ]
    }
  }

  # Compute x, y coordinates ------------------------------------------------

  df_nodes$x <- df_nodes$x * spacing_x
  df_nodes$y <- df_nodes$y * spacing_y

  df_nodes$node_xmin <- NA
  df_nodes$node_xmax <- NA
  df_nodes$node_ymin <- NA
  df_nodes$node_ymax <- NA
  if(any(df_nodes$shape == "rect")){
    df_nodes[df_nodes$shape == "rect", c("node_xmin", "node_xmax")] <- cbind(df_nodes[df_nodes$shape == "rect", ]$x-.5*rect_width,
                                                                             df_nodes[df_nodes$shape == "rect", ]$x+.5*rect_width)
    df_nodes[df_nodes$shape == "rect", c("node_ymin", "node_ymax")] <- cbind(df_nodes[df_nodes$shape == "rect", ]$y-.5*rect_height,
                                                                             df_nodes[df_nodes$shape == "rect", ]$y+.5*rect_height)
  }

  if(any(df_nodes$shape == "oval")){
    df_nodes[df_nodes$shape == "oval", c("node_xmin", "node_xmax")] <- cbind(df_nodes[df_nodes$shape == "oval", ]$x-.5*ellipses_width,
                                                                             df_nodes[df_nodes$shape == "oval", ]$x+.5*ellipses_width)
    df_nodes[df_nodes$shape == "oval", c("node_ymin", "node_ymax")] <- cbind(df_nodes[df_nodes$shape == "oval", ]$y-.5*ellipses_height,
                                                                             df_nodes[df_nodes$shape == "oval", ]$y+.5*ellipses_height)
  }

  # Determine where best to connect nodes -----------------------------------

  connect_cols <- .determine_connections(df_nodes, df_edges, angle)
  # assign by groups to prevent arrows from ending up in the wrong place
  # Sort by group first, then by level
  df_edges$connect_from <- connect_cols[, 1]
  df_edges$connect_to <- connect_cols[, 2]
  df_edges$curvature <- as.numeric(connect_cols[, 3])
  has_curve <- which(!is.na(df_edges$curvature)) # Check if this is correct, or should be is.null / is.na

  #df_edges$curvature[has_curve][df_edges$connect_to[has_curve] == df_edges$connect_from[has_curve] & df_edges$connect_from[has_curve] %in% c("top", "right") & df_edges$curvature[has_curve] < 0] <- -1 * df_edges$curvature[has_curve][df_edges$connect_to[has_curve] == df_edges$connect_from[has_curve] & df_edges$connect_from[has_curve] %in% c("top", "right") & df_edges$curvature[has_curve] < 0]

  # Reposition error variances to "empty" part of the node
  df_edges <- reposition_variances(df_edges)

  out <- Args

  if(is.null(df_nodes[["label"]])) df_nodes$label <- df_nodes$name
  order_nodes <- c("name", "shape", "label", "group", "level","x", "y", "node_xmin", "node_xmax", "node_ymin", "node_ymax")
  order_nodes <- order_nodes[which(order_nodes %in% names(df_nodes))]
  order_nodes <- c(order_nodes, names(df_nodes)[!names(df_nodes) %in% order_nodes])
  # Order and add 'show' column
  if(nrow(df_nodes) > 0){
    if(!"show" %in% names(df_nodes)){
      df_nodes <- cbind(df_nodes[, order_nodes], show = TRUE)
    }
  }
  out$nodes <- df_nodes
  order_edges <- c("from", "to", "label", "group", "level","arrow", "curvature", "connect_from", "connect_to")
  order_edges <- order_edges[which(order_edges %in% names(df_edges))]
  order_edges <- c(order_edges, names(df_edges)[!names(df_edges) %in% order_edges])
  # Order and add 'show' column
  if(nrow(df_edges) > 0){
    if(!"show" %in% names(df_edges)){
      df_edges <- cbind(df_edges[, order_edges], show = TRUE)
    }
  }
  out$edges <- df_edges
  out$layout <- NULL
  class(out) <- "sem_graph"
  out
}

#' @method prepare_graph lavaan
#' @param model Instead of the edges argument, it is also possible to use the
#' model argument and pass an object for which a method exists (e.g.,
#' \code{mplus.model} or \code{lavaan}).
# @param label Character, indicating which column to use for node labels. Nodes
# are labeled with mean values of the observed/latent variables they represent.
# Defaults to 'est_sig', which consists of the estimate value with significance
# asterisks.
#' @rdname prepare_graph
#' @export
prepare_graph.lavaan <- function(model,
                                 edges = get_edges(x = model),
                                 layout = get_layout(x = model),
                                 nodes = get_nodes(x = model),
                                 ...){
  dots <- match.call(expand.dots = FALSE)[["..."]]
  pass_args <- c("label", "digits", "columns")
  edges <- substitute(edges)
  layout <- substitute(layout)
  nodes <- substitute(nodes)
  if(any(pass_args %in% names(dots))){
    for(this_arg in pass_args){
      if(do.call(hasArg, list(this_arg))){
        if(is.null(edges[[this_arg]])) edges[[this_arg]] <- dots[[this_arg]]
        if(is.null(nodes[[this_arg]])) nodes[[this_arg]] <- dots[[this_arg]]
        dots[[this_arg]] <- NULL
      }
    }
  }
  Args <- as.list(match.call(expand.dots = FALSE)[-1])
  model <- model
  Args[["..."]] <- NULL
  Args[["model"]] <- model # To prevent issue with pipe
  # Problem: the object `model` is available in this environment,
  # but objects passed to get_edges() etc are not available in this environment.
  # They are available in the parent environment, but `model` is not.
  # Maybe make new environment and add model to it?
  # It's a hack, but seems to pass all tests.
  use_env <- parent.frame()
  assign("model", model, envir = use_env)
  Args[["edges"]] <-  eval(edges, envir = use_env)
  Args[["nodes"]] <-  eval(nodes, envir = use_env)
  Args[["layout"]] <- eval(layout, envir = use_env)
  Args <- c(Args, dots)

  do.call(prepare_graph_model, Args)
}

#' @method prepare_graph MxModel
#' @rdname prepare_graph
#' @export
prepare_graph.MxModel <- prepare_graph.lavaan

#' @method prepare_graph character
#' @rdname prepare_graph
#' @export
prepare_graph.character <- function(...){
  cl <- match.call()
  if(names(cl)[2L] == "model") cl[[1L]] <- str2lang("tidySEM:::prepare_graph.lavaan")
  if(names(cl)[2L] %in% c("layout", "edges", "nodes")) cl[[1L]] <- str2lang("tidySEM:::prepare_graph.default")
  if(as.list(cl[[2L]])[[1]] == "matrix") cl[[1L]] <- str2lang("tidySEM:::prepare_graph.default")
  if(as.list(cl[[2L]])[[1]] == "character") cl[[1L]] <- str2lang("tidySEM:::prepare_graph.lavaan")
  eval.parent(cl)
}

#' @method prepare_graph mplus.model
#' @rdname prepare_graph
#' @export
prepare_graph.mplus.model <- prepare_graph.lavaan

#' @method prepare_graph mplusObject
#' @rdname prepare_graph
#' @export
prepare_graph.mplusObject <- prepare_graph.lavaan

prepare_graph_model <- function(model, ...) {
  Args <- as.list(match.call()[-1])
  call_args <- list(x = model)
  if(!"edges" %in% names(Args)){
    edges <- do.call(get_edges, call_args)
    Args$edges <- edges
  }
  if(!"nodes" %in% names(Args)){
    nodes <- do.call(get_nodes, call_args)
    Args$nodes <- nodes
  }
  if(!"layout" %in% names(Args)){
    layout <- do.call(get_layout, call_args)
    Args$layout <- layout
  }
  Args[["model"]] <- NULL
  do.call(prepare_graph.default, Args)
}

#' @export
#' @importFrom stats setNames
#' @importFrom ggplot2 aes_string arrow element_blank facet_grid geom_label
#' @importFrom ggplot2 geom_rect geom_segment geom_text geom_vline ggplot labs
#' @importFrom ggplot2 theme theme_bw unit facet_wrap facet_grid coord_fixed
#' @importFrom graphics plot
#' @method plot sem_graph
plot.sem_graph <- function(x, y, ...){
  df_nodes <- x$nodes
  df_edges <- x$edges
  if("show" %in% names(df_nodes)){
    df_nodes <- df_nodes[df_nodes$show, , drop = FALSE]
    if(!all(df_edges$from %in% df_nodes$name & df_edges$to %in% df_nodes$name)){
      message("Some edges involve nodes with argument 'show = FALSE'. These were dropped.")
      df_edges <- df_edges[df_edges$from %in% df_nodes$name & df_edges$to %in% df_nodes$name, , drop = FALSE]
    }
  }

  if("show" %in% names(df_edges)){
    df_edges <- df_edges[df_edges$show, , drop = FALSE]
  }
  if(nrow(df_nodes) == 0){
    stop("No nodes left to plot.")
  }
  rect_width <- x$rect_width
  rect_height <- x$rect_height
  ellipses_width <- x$ellipses_width
  ellipses_height <- x$ellipses_height
  variance_diameter <- x$variance_diameter
  spacing_x <- x$spacing_x
  spacing_y <- x$spacing_y
  text_size <- x$text_size
  fix_coord <- x$fix_coord

  # Check dfs ---------------------------------------------------------------
  numeric_cols <- c("curvature")
  df_edges[numeric_cols[which(numeric_cols %in% names(df_edges))]] <- lapply(df_edges[numeric_cols[which(numeric_cols %in% names(df_edges))]], as.numeric)

  if(nrow(df_edges)){
    connect_points <- .connect_points(df_nodes, df_edges)

    df_edges <- cbind(df_edges, connect_points)

    df_edges <- cbind(df_edges, setNames(data.frame(t(apply(connect_points, 1, function(x){(x[1:2]+x[3:4])/2}))), c("text_x", "text_y")))
  }


  # Make plot ---------------------------------------------------------------

  p <- ggplot(NULL)

  if(any(df_edges$from == df_edges$to)){
    p <- .plot_variances(p, df = df_edges[df_edges$from == df_edges$to, ], text_size = text_size, diameter = variance_diameter)
  }
  if(any(!df_edges$from == df_edges$to)){
    p <- .plot_edges(p, df_edges[!df_edges$from == df_edges$to, ], text_size)
  }

  p <- .plot_nodes(p, df = df_nodes, text_size = text_size, ellipses_width = ellipses_width, ellipses_height = ellipses_height)

  if("level" %in% names(df_nodes) & "level" %in% names(df_edges)){
    if("group" %in% names(df_nodes) & "group" %in% names(df_edges)){
      p <- p + facet_grid(level~group, scales = "free")
    } else {
      p <- p + facet_wrap(~level, scales = "free")
    }
  } else {
    if("group" %in% names(df_nodes) & "group" %in% names(df_edges)){
      p <- p + facet_wrap(~group, scales = "free")
    } else {

    }
  }
  if(fix_coord){
    if(!("level" %in% names(df_nodes) | "level" %in% names(df_edges) | "group" %in% names(df_nodes) | "group" %in% names(df_edges))){
      p <- p + coord_fixed(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")
    } else {
      p <- p+ theme(aspect.ratio = 1)
    }
  }
  p + theme(axis.line = element_blank(),
            axis.text.x = element_blank(),
            axis.text.y = element_blank(),
            axis.ticks = element_blank(),
            axis.title.x = element_blank(),
            axis.title.y = element_blank(), legend.position = "none",
            panel.background = element_blank(), panel.border = element_blank(),
            panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
            plot.background = element_blank())

}

#' @importFrom stats na.omit
.connect_points <- function(df_nodes, df_edges){
  node_id <- do.call(paste0, df_nodes[, na.omit(match(c("name", "group", "level"), names(df_nodes))), drop = FALSE])

  edge_id <- do.call(paste0, df_edges[, na.omit(match(c("from", "group", "level"), names(df_edges))), drop = FALSE])

  loc <- list(
    c("node_xmin", "y"),
    c("node_xmax", "y"),
    c("x", "node_ymax"),
    c("x", "node_ymin"))[match(df_edges$connect_from, c("left", "right", "top", "bottom"))]
  from_loc <- t(mapply(function(x,y){unlist(df_nodes[node_id == x, y])}, x = edge_id, y = loc, USE.NAMES = FALSE))
  edge_id <- do.call(paste0, df_edges[, na.omit(match(c("to", "group", "level"), names(df_edges))), drop = FALSE])
  loc <- list(
    c("node_xmin", "y"),
    c("node_xmax", "y"),
    c("x", "node_ymax"),
    c("x", "node_ymin"))[match(df_edges$connect_to, c("left", "right", "top", "bottom"))]
  to_loc <- t(mapply(function(x,y){unlist(df_nodes[node_id == x, y])}, x = edge_id, y = loc, USE.NAMES = FALSE))

  setNames(data.frame(cbind(from_loc, to_loc)), c("edge_xmin", "edge_ymin", "edge_xmax", "edge_ymax"))
}

matrix_to_nodes <- function(nodes, shape){
  nodes_long <- setNames(as.data.frame.table(nodes), c("y", "x", "label"))
  nodes_long[1:2] <- lapply(nodes_long[1:2], as.numeric)
  nodes_long$y <- (max(nodes_long$y)+1)-nodes_long$y
  nodes_long$label <- as.character(nodes_long$label)
  nodes_long$shape <- as.vector(shape)
  nodes_long <- nodes_long[!nodes_long$label == "", ]
  nodes_long
}

globalVariables(c("name"))

#' @title Extract nodes from a SEM model object
#' @description Attempts to extract nodes from a SEM model object, where nodes
#' are defined as observed or latent variables.
#' @param x A model object of class \code{mplusObject} or \code{lavaan}.
#' @param label Either a character, indicating which column to use for node
#' labels, or an expression. See Details.
#' Defaults to \code{paste(name, est_sig, sep = "\n"},
#' which gives the node name followed by the estimated value with
#' significance asterisks.
#' @param ... Additional parameters passed to \code{\link{table_results}}. For
#' example, users can pass the \code{digits} argument to control the number of
#' digits in the node label, or pass the \code{columns} argument to retain
#' auxiliary columns in the \code{tidy_nodes data.frame} for further processing
#' (see Examples).
#' @details The function \code{get_nodes} identifies all dependent and
#' independent variables in the model as nodes. If a mean structure / intercepts
#' are included in the model, the output of \code{table_results} for those
#' means / intercepts is used to label the nodes.
#'
#' ## Custom labels
#'
#' One way to create custom node labels is by passing an expression to
#' \code{label}, as in the default value of the argument. When an expression is
#' passed to \code{label}, it is evaluated in the context of a \code{data.frame}
#' containing the results
#' of a call to \code{\link{table_results}} on the \code{x} argument, with an
#' additional column labeled \code{name}, which contains the node names.
#'
#' Another way to create custom labels is by requesting auxiliary variables
#' using the \code{columns} argument (which is passed to
#' \code{\link{table_results}}), and then using these columns to construct a new
#' label. See examples.
#' @return An object of class 'tidy_nodes'
#' @examples
#' # Standard use extracts node names and shape
#' # (rect for observed, oval for latent)
#' library(lavaan)
#' res <- sem("dist ~ speed", cars)
#' get_nodes(res)
#'
#' # To label nodes with mean values, include meanstructure in the model
#' # Note that it is possible to pass the argument 'digits' to table_results
#' # through '...'
#' res <- sem("dist ~ speed", cars, meanstructure = TRUE)
#' get_nodes(res, digits = 3)
#'
#' # Pass an expression to the 'label' argument for custom labels
#' get_nodes(res, label = paste0(name, " ", est_sig, "\n", confint))
#'
#' # Pass the argument 'columns' to table_results through '...' to retain
#' # auxiliary columns for further processing
#' nod <- get_nodes(res, columns = c("est_sig", "confint"))
#' nod
#' nod <- within(nod, {label <- paste0(name, " ", est_sig, "\n", confint)})
#' nod
#' @rdname get_nodes
#' @keywords tidy_graph
#' @export
get_nodes <- function(x, label = paste2(name, est_sig, sep = "\n"), ...){
  UseMethod("get_nodes", x)
}

# # @method get_nodes mplus.model
# # @export
# get_nodes.mplus.model <- function(x, label = "est_sig", ...){
#   Args <- as.list(match.call()[-1])
#   Args$x <- table_results(x, columns = NULL)
#   do.call(get_nodes, Args)
# }

# @method get_nodes character
# @export
# get_nodes.character <- function(x, label = NULL, ...){
#   dots <- list(...)
#   cl <- match.call()
#   cl["columns"] <- list(NULL)
#   cl[[1L]] <- quote(table_results)
#   cl$x <- eval.parent(cl)
#   if("columns" %in% names(dots)){
#     cl["columns"] <- dots["columns"]
#   }
#   cl[[1L]] <- quote(get_nodes)
#   eval.parent(cl)
# }



#' @method get_nodes lavaan
#' @export
#' @importFrom lavaan parameterTable lavInspect
get_nodes.lavaan <- function(x, label = paste2(name, est_sig, sep = "\n"), ...){
  dots <- list(...)
  cl <- match.call()
  cl["columns"] <- list(NULL)
  cl[[1L]] <- quote(table_results)
  cl$x <- eval.parent(cl)
  # if(!fit@Options[["meanstructure"]]){
  #   message("Use the argument 'meanstructure = TRUE' in the lavaan call to obtain information about node means.")
  # }
  if("columns" %in% names(dots)){
    cl["columns"] <- dots["columns"]
  }
  cl[[1L]] <- quote(get_nodes)
  eval.parent(cl)
}

#' @method get_nodes default
#' @export
get_nodes.default <- function(x, label = paste2(name, est_sig, sep = "\n"), ...){
  dots <- list(...)
  cl <- match.call()
  cl["columns"] <- list(NULL)
  cl[[1L]] <- quote(table_results)
  cl$x <- tryCatch(eval.parent(cl), error = function(e){
    stop("Could not extract nodes from object.")
  })
  if("columns" %in% names(dots)){
    cl["columns"] <- dots["columns"]
  }
  cl[[1L]] <- quote(get_nodes)
  eval.parent(cl)
}

#' @method get_nodes mplusObject
#' @export
get_nodes.mplusObject <- get_nodes.lavaan


#' @method get_nodes MxModel
#' @export
get_nodes.MxModel <- get_nodes.lavaan


#' @method get_nodes mplus.object
#' @export
get_nodes.mplus.object <- get_nodes.lavaan

#' @method get_nodes mplus.model
#' @export
get_nodes.mplus.model <- get_nodes.lavaan

#' @method get_nodes tidy_results
#' @export
get_nodes.tidy_results <- function(x, label = paste2(name, est_sig, sep = "\n"), label_name = TRUE, ...){
  dots <- list(...)
  cl <- match.call()
  cl[[1L]] <- str2lang("tidySEM:::get_nodes.tidy_results")
  if("group" %in% names(x)){
    x_list <- lapply(unique(x$group), function(i){
      cl$x <- x[x$group == i, -which(names(x) == "group")]
      tmp <- eval(cl)
      tmp$group <- i
      tmp
    })
    return(bind_list(x_list))
  }
  if("level" %in% names(x)){
    x_list <- lapply(unique(x$level), function(i){
      cl$x <- x[x$level == i, -which(names(x) == "level")]
      tmp <- eval(cl)
      tmp$name <- paste0(tmp$name, ".", i)
      tmp$level <- i
      tmp
    })
    return(bind_list(x_list))
  }
  latent <- unique(x$lhs[x$op == "=~"])

  obs <- unique(c(x$lhs[x$op %in% c("~~", "~", "~1")], x$rhs[x$op %in% c("~")]))
  nodes <- unique(c(latent, obs))
  nodes <- data.frame(name = unique(nodes), shape = c("rect", "oval")[(unique(nodes) %in% latent)+1], stringsAsFactors = FALSE)
  #nodes$label <- nodes$name

  # Make a data.frame based on the information about node means
  node_df <- x[x$op == "~1", ]
  if("label" %in% names(node_df)){
    names(node_df)[names(node_df) == "label"] <- "label_results"
  }
  # Keep only rows corresponding to the identified nodes
  node_rows <- match(nodes$name, node_df$lhs)
  if(any(!is.na(node_rows))){
    node_df$name <- node_df$lhs
    nodes <- merge(nodes, node_df, by = "name", all.x = TRUE)
  }
  # If the user asked for a label
  # Check if the label is an expression. If it is, substitute it
  if (inherits(suppressWarnings(try(label, silent = TRUE)), "try-error")) {
    label <- substitute(label)
  }

  if(is.character(label)){
    if(!is.null(nodes[[label]])){
      nodes[["label"]] <- nodes[[label]]
    } else {
      nodes[["label"]] <- nodes[["name"]]
    }
  } else {
    if(!is.null(label)){
      nodes[["label"]] <- tryCatch(eval(label, envir = nodes), error = function(e){
        nodes[["name"]]
      })
    } else {
    nodes[["label"]] <- ""
    }
  }

  # Retain all requested columns
  if(is.null(dots[["columns"]])){
    keep_cols <- unique(c(c("name", "shape", "label"), names(node_df)[names(node_df) %in% names(nodes)]))
  } else {
    keep_cols <- c(c("name", "shape", "label"), dots[["columns"]])
  }

  nodes <- nodes[, keep_cols, drop = FALSE]
  class(nodes) <- c("tidy_nodes", class(nodes))
  nodes
}

#' @title Extract edges from a SEM model object
#' @description Attempts to extract edges from a SEM model object, where edges
#' are defined as regression paths and covariances between variables (nodes).
#' @param x A model object of class \code{mplusObject} or \code{lavaan}.
#' @param label Either a character, indicating which column to use for edge
#' labels, or an expression. See Details.
#' Defaults to \code{"est_sig"},
#' which labels edges with the estimated value with significance asterisks,
#' as obtained from \code{\link{table_results}}. See Details and examples for
#' more information.
#' @param ... Additional parameters passed to \code{\link{table_results}}. For
#' example, users can pass the \code{digits} argument to control the number of
#' digits in the edge label, or pass the \code{columns} argument to retain
#' auxiliary columns in the \code{tidy_edges data.frame} for further processing
#' (see Examples).
#' @details The function \code{get_edges} identifies all regression paths,
#' latent variable definitions, and covariances in the model as edges.
#' The output of \code{table_results} for those
#' paths is used to label the edges.
#'
#' ## Custom labels
#'
#' One way to create custom edge labels is by passing an expression to
#' \code{label}. When an expression is
#' passed to \code{label}, it is evaluated in the context of a \code{data.frame}
#' containing the results
#' of a call to \code{\link{table_results}} on the \code{x} argument.
#'
#' Another way to create custom labels is by requesting auxiliary variables
#' using the \code{columns} argument (which is passed to
#' \code{\link{table_results}}), and then using these columns to construct a new
#' label. See examples.
#' @return An object of class 'tidy_edges'
#' @examples
#' # Standard use
#' library(lavaan)
#' res <- sem("dist ~ speed", cars)
#' get_edges(res)
#'
#' # Pass an expression to the 'label' argument for custom labels
#' get_edges(res, label = paste(est_sig, confint))
#'
#' # Pass the argument 'columns' to table_results through '...' to retain
#' # auxiliary columns for further processing
#' edg <- get_edges(res, columns = c("est_sig", "confint"))
#' edg
#' edg <- within(edg, {label <- paste(est_sig, confint)})
#' edg
#' @rdname get_edges
#' @keywords tidy_graph
#' @export
get_edges <- function(x, label = "est_sig", ...){
  UseMethod("get_edges", x)
}

#' @method get_edges default
#' @export
get_edges.default <- function(x, label = paste2(name, est_sig, sep = "\n"), ...){
  dots <- list(...)
  cl <- match.call()
  cl["columns"] <- list(NULL)
  cl[[1L]] <- quote(table_results)
  cl$x <- tryCatch(eval.parent(cl), error = function(e){
    stop("Could not extract edges from object.")
  })
  if("columns" %in% names(dots)){
    cl["columns"] <- dots["columns"]
  }
  cl[[1L]] <- str2lang("tidySEM:::get_edges.tidy_results")
  eval.parent(cl)
}

# @method get_edges character
# @export
# get_edges.character <- function(x, label = NULL, ...){
#   dots <- list(...)
#   cl <- match.call()
#   cl["columns"] <- list(NULL)
#   cl[[1L]] <- quote(table_results)
#   cl$x <- eval.parent(cl)
#   if("columns" %in% names(dots)){
#     cl["columns"] <- dots["columns"]
#   }
#   cl[[1L]] <- quote(get_edges)
#   eval.parent(cl)
# }

#' @method get_edges lavaan
#' @export
get_edges.lavaan <- function(x, label = "est_sig", ...){
  dots <- list(...)
  cl <- match.call()
  #cl[["label"]] <- force(label)
  cl[[1L]] <- quote(table_results)
  cl["columns"] <- list(NULL)
  cl$x <- eval.parent(cl)
  if("columns" %in% names(dots)){
    cl["columns"] <- dots["columns"]
  }
  cl[[1L]] <- str2lang("tidySEM:::get_edges.tidy_results")
  eval.parent(cl)
}

#' @method get_edges mplusObject
#' @export
get_edges.mplusObject <- get_edges.lavaan

#' @method get_edges MxModel
#' @export
get_edges.MxModel <- get_edges.lavaan

#' @method get_edges mplus.object
#' @export
get_edges.mplus.object <- get_edges.lavaan

#' @method get_edges mplus.model
#' @export
get_edges.mplus.model <- get_edges.lavaan

#' @method get_edges tidy_results
#' @export
get_edges.tidy_results <- function(x, label = "est_sig", ...){
  dots <- list(...)
  cl <- match.call()
  if(!is.null(attr(x, "user_specified"))){
    x$show <- attr(x, "user_specified")
  }
  if("group" %in% names(x)){
    x_list <- lapply(na.omit(unique(x$group)), function(i){
      cl$x <- x[x$group == i, -which(names(x) == "group")]
      tmp <- eval.parent(cl)
      tmp$group <- i
      tmp
    })
    return(bind_list(x_list))
  }
  if("level" %in% names(x)){
    x_list <- lapply(na.omit(unique(x$level)), function(i){
      cl$x <- x[x$level == i, -which(names(x) == "level")]
      tmp <- eval.parent(cl)
      tmp$from <- paste0(tmp$from, ".", i)
      tmp$to <- paste0(tmp$to, ".", i)
      tmp$level <- i
      tmp
    })
    return(bind_list(x_list))
  }
  if("label" %in% names(x)){
    names(x)[names(x) == "label"] <- "label_results"
  }
  x <- x[x$op %in% c("~", "~~", "=~"), ]
  keep_cols <- names(x)
  x$from <- x$lhs
  x$to <- x$rhs
  x$arrow <- NA
  x$arrow[x$op == "~~"] <- "none" # Covariances
  x$arrow[x$op == "~~" & x$lhs == x$rhs] <- "both" # Variances
  x$arrow[x$op == "=~"] <- "last"
  x$arrow[x$op == "~"] <- "last"
  x$from[x$op == "~"] <- x$rhs[x$op == "~"]
  x$to[x$op == "~"] <- x$lhs[x$op == "~"]

  # If the user asked for a label
  # Check if the label is an expression. If it is, substitute it
  if (inherits(suppressWarnings(try(label, silent = TRUE)), "try-error")) {
    label <- substitute(label)
  }

  if(!is.null(dots[["columns"]])){
    keep_cols <- dots[["columns"]]
  }

  if(is.character(label)){
    if(!is.null(x[[label]])){
      x[["label"]] <- x[[label]]
      keep_cols <- c("label", keep_cols)
    }
  } else {
    if(!is.null(label)){
      x[["label"]] <- tryCatch(eval(label, envir = x), error = function(e){
        message("Could not construct label in get_edges().")
      })
      keep_cols <- c("label", keep_cols)
    }
  }



  tmp <- x #data.frame(as.list(x)[ c("from", "to", "arrow", keep_cols) ], check.names=FALSE)
  tmp$curvature <- tmp$connect_to <- tmp$connect_from <- NA
  tmp$curvature[x$op == "~~" & !x$lhs == x$rhs] <- 60
  keep_cols <- unique(c("from", "to", "arrow", "label", "connect_from", "connect_to", "curvature", keep_cols))
  keep_cols <- keep_cols[keep_cols %in% names(tmp)]
  tmp <- tmp[, keep_cols, drop = FALSE]
  class(tmp) <- c("tidy_edges", class(tmp))
  attr(tmp, "which_label") <- label
  row.names(tmp) <- NULL
  tmp
}


.euclidean_distance <- function(p, q){
  sqrt(sum((p - q)^2))
}

.manhattan_distance <- function(p, q){
  sum(abs(p-q))
}

match.call.defaults <- function(...) {
  call <- evalq(match.call(expand.dots = FALSE), parent.frame(1))
  formals <- evalq(formals(), parent.frame(1))

  for(i in setdiff(names(formals), names(call)))
    call[i] <- list( formals[[i]] )


  match.call(sys.function(sys.parent()), call)
}

.plot_variances <- function(p, df, text_size, diameter, ...) {
  npoints <- 20
  radius <- diameter / 2
  xlabel <- xcenter <- df$edge_xmin
  ylabel <- ycenter <- df$edge_ymin
  offset <- rep(1.5, length(xcenter))
  ycenter[df$connect_from == "top"] <-
    ycenter[df$connect_from == "top"] + radius
  ylabel[df$connect_from == "top"] <-
    ylabel[df$connect_from == "top"] + diameter
  ycenter[df$connect_from == "bottom"] <-
    ycenter[df$connect_from == "bottom"] - radius
  ylabel[df$connect_from == "bottom"] <-
    ylabel[df$connect_from == "bottom"] - diameter
  offset[df$connect_from == "bottom"] <- .5
  xcenter[df$connect_from == "left"] <-
    xcenter[df$connect_from == "left"] - radius
  xlabel[df$connect_from == "left"] <-
    xlabel[df$connect_from == "left"] - diameter
  offset[df$connect_from == "left"] <- 0
  xcenter[df$connect_from == "right"] <-
    xcenter[df$connect_from == "right"] + radius
  xlabel[df$connect_from == "right"] <-
    xlabel[df$connect_from == "right"] + diameter
  offset[df$connect_from == "right"] <- 1
  df_label <- data.frame(df,
                         x = xlabel,
                         y = ylabel,
                         label = df$label)

  df_ellipse <-
    data.frame(do.call(rbind, lapply(1:nrow(df), function(this_var) {
      point_seq <-
        seq((offset[[this_var]] * pi), (2 + offset[[this_var]]) * pi, length.out = npoints) %% (2 *
                                                                                                  pi)
      matrix(
        c(
          xcenter[[this_var]] + radius * cos(point_seq),
          ycenter[[this_var]] + radius * sin(point_seq),
          rep(this_var, npoints)
        ),
        nrow = npoints,
        ncol = 3,
        dimnames = list(NULL, c("x", "y", "id"))
      )
    })))

  df$id <- 1:nrow(df)
  df_ellipse <- merge(df_ellipse, df, by = "id")

  p <- .plot_edges_internal(p, df_ellipse)
  .plot_label_internal(p, df_label, text_size)
}

.plot_nodes <- function(p, df, text_size, ellipses_width, ellipses_height){
  # Prepare aesthetics ------------------------------------------------------
  if(any(c("colour", "color") %in% names(df))){
    df[[which(names(df) %in% c("colour", "color"))]] <- as.character(df[[which(names(df) %in% c("colour", "color"))]])
  } else {
    df$colour <- "black"
  }

  if("fill" %in% names(df)){
    df$fill <- as.character(df$fill)
  } else {
    df$fill <- "white"
  }

  if(any(df$shape == "rect")){
    df_rect <- df[df$shape == "rect", ]
    Args <- c("linetype", "size", "colour", "color", "fill", "alpha")
    Args <- as.list(df_rect[which(names(df_rect) %in% Args)])
    Args <- c(list(
      data = df_rect,
      mapping = aes_string(xmin = "node_xmin", xmax = "node_xmax", ymin = "node_ymin", ymax = "node_ymax")),
      Args)
    p <- p + do.call(geom_rect, Args)
  }
  if(any(df$shape == "oval")){
    p <- .oval_node(p, df = df[df$shape == "oval", ], oval_width = ellipses_width, oval_height = ellipses_height, npoints = 360)
  }
  # Hier
  .plot_label_internal(p = p, df = df, text_size = text_size)
}

.determine_connections <- function(df_nodes, df_edges, angle){
  # Begin recursion
  if("group" %in% names(df_nodes)){
    x_list <- lapply(unique(df_nodes$group), function(i){
      .determine_connections(df_nodes = df_nodes[df_nodes$group == i, -which(names(df_nodes) == "group")],
                             df_edges = df_edges[df_edges$group == i, -which(names(df_edges) == "group")],
                             angle = angle)
    })
    return(bind_list(x_list))
  }
  if("level" %in% names(df_nodes)){
    x_list <- lapply(unique(df_nodes$level), function(i){
      .determine_connections(df_nodes = df_nodes[df_nodes$level == i, -which(names(df_nodes) == "level")],
                             df_edges = df_edges[df_edges$level == i, -which(names(df_edges) == "level")],
                             angle = angle)
    })
    return(bind_list(x_list))
  }
  # End recursion
  connector_sides <-
    cbind(c("left", "right", "bottom", "top")[rep(1:4, each = 4)],
          c("left", "right", "bottom", "top")[rep(1:4, 4)])
  out <- matrix(nrow = nrow(df_edges), ncol = 2)


  # Connect nodes -----------------------------------------------------------

  curws <- df_edges$curvature
  # For columns
  same_column <- df_nodes$x[match(df_edges$from, df_nodes$name)] == df_nodes$x[match(df_edges$to, df_nodes$name)]
  xrange <- range(df_nodes$x)
  # Check if nodes vary along the x range
  if(diff(xrange) > 0){
    midpoint_df <- mean(xrange)
    left_half <- df_nodes$x[match(df_edges$from, df_nodes$name)] < midpoint_df

    curws[same_column & left_half & (!is.na(df_edges$curvature))] <- curws[same_column & left_half & (!is.na(df_edges$curvature))]*sign(df_nodes$y[match(df_edges$to, df_nodes$name)]-df_nodes$y[match(df_edges$from, df_nodes$name)])[same_column & left_half & (!is.na(df_edges$curvature))]

    out[same_column & left_half & (!is.na(df_edges$curvature) | df_edges$from == df_edges$to), ] <- c("left", "left")
    out[same_column & !left_half & (!is.na(df_edges$curvature) | df_edges$from == df_edges$to), ] <- c("right", "right")
  } else {
    #out[same_column & (!is.na(df_edges$curvature) | df_edges$from == df_edges$to), ] <- c("right", "right")
  }

  # For rows
  same_row <- df_nodes$y[match(df_edges$from, df_nodes$name)] == df_nodes$y[match(df_edges$to, df_nodes$name)]
  yrange <- range(df_nodes$y)
  if(diff(yrange) > 0){
    midpoint_df <- mean(yrange)
    top_half <- df_nodes$y[match(df_edges$from, df_nodes$name)] > midpoint_df

    curws[same_row & top_half & (!is.na(df_edges$curvature))] <- curws[same_row & top_half & (!is.na(df_edges$curvature))]*sign(df_nodes$x[match(df_edges$to, df_nodes$name)]-df_nodes$x[match(df_edges$from, df_nodes$name)])[same_row & top_half & (!is.na(df_edges$curvature))]

    out[same_row & !top_half & (!is.na(df_edges$curvature) | df_edges$from == df_edges$to), ] <- c("bottom", "bottom")
    out[same_row & top_half & (!is.na(df_edges$curvature) | df_edges$from == df_edges$to), ] <- c("top", "top")
  } else {
    #out[same_row & (!is.na(df_edges$curvature) | df_edges$from == df_edges$to), ] <- c("top", "top")
  }

  incomplete <- is.na(out[,1])
  df_edges <- df_edges[incomplete, ]
  if(any(incomplete)){
    if(!is.null(angle)){
      out[incomplete, ] <- t(mapply(function(from, to){
        if(angle > 180) angle <- 180
        if(angle < 0) angle <- 0
        fx <- df_nodes$x[df_nodes$name == from]
        tx <- df_nodes$x[df_nodes$name == to]
        fy <- df_nodes$y[df_nodes$name == from]
        ty <- df_nodes$y[df_nodes$name == to]

        if(!(fx == tx | fy == ty)){

          dx <- tx-fx
          dy <- ty-fy
          an <- (atan2(dy,dx)*(180/pi)) %% 360
          if(an > 90+.5*angle & an < 270-.5*angle){
            return(c("left", "right"))
          }
          if(an <= 90+(.5*angle) & an >= 90-(.5*angle)){
            return(c("top", "bottom"))
          }
          if(an <  90-.5*angle | an > 270+.5*angle){
            return(c("right", "left"))
          }
          return(c("bottom", "top"))
        } else {
          if(fx == tx){
            list(c("bottom", "top"), c("top", "bottom"))[[(((ty-fy)>0)+1)]]
          } else {
            list(c("left", "right"), c("right", "left"))[[(((tx-fx)>0)+1)]]
          }
        }

      }, from = df_edges$from, to = df_edges$to))
    } else {
      out[incomplete, ] <- t(mapply(function(from, to) {
        from_mat <-
          as.matrix(rbind(
            expand.grid(x = unlist(df_nodes[df_nodes$name == from, c("node_xmin", "node_xmax")]),
                        y = unlist(df_nodes[df_nodes$name == from, "y"])),
            expand.grid(x = unlist(df_nodes[df_nodes$name == from, "x"]),
                        y = unlist(df_nodes[df_nodes$name == from, c("node_ymin", "node_ymax")]))
          ))

        to_mat <-
          as.matrix(rbind(
            expand.grid(x = unlist(df_nodes[df_nodes$name == to, c("node_xmin", "node_xmax")]),
                        y = unlist(df_nodes[df_nodes$name == to, "y"])),
            expand.grid(x = unlist(df_nodes[df_nodes$name == to, "x"]),
                        y = unlist(df_nodes[df_nodes$name == to, c("node_ymin", "node_ymax")]))
          ))

        connector_sides[which.min(mapply(
          function(from, to) {
            do.call(.euclidean_distance, list(p = from_mat[from, ], q = to_mat[to, ]))
          },
          from = rep(1:4, each = 4),
          to = rep(1:4, 4)
        )), ]

      }, from = df_edges$from, to = df_edges$to))
    }
  }
  cbind(out, curws)
}

#' @importFrom stats dist
#' @importFrom ggplot2 scale_linetype_manual aes_string
#' @importFrom ggplot2 arrow
.plot_edges <- function(p, df, text_size = 5, npoints = 101, ...) {
  df_edges <- data.frame(do.call(rbind, lapply(1:nrow(df), function(rownum){
    this_row <- df[rownum, ]
    if(is.na(this_row[["curvature"]])){
      label_loc <- ifelse(is.null(this_row[["label_location"]]), .5, this_row[["label_location"]])
      matrix(
        c(this_row[["edge_xmin"]], this_row[["edge_ymin"]], rownum,
          (1-label_loc) * matrix(c(this_row[["edge_xmin"]], this_row[["edge_ymin"]]), ncol = 2)+ label_loc*(matrix(c(this_row[["edge_xmax"]], this_row[["edge_ymax"]]), ncol = 2)), rownum,
          this_row[["edge_xmax"]], this_row[["edge_ymax"]], rownum),
        nrow = 3, byrow = TRUE, dimnames = list(NULL, c("x", "y", "id"))
      )
    } else {
      A = matrix(c(this_row[["edge_xmin"]], this_row[["edge_ymin"]]), nrow = 1)
      B = matrix(c(this_row[["edge_xmax"]], this_row[["edge_ymax"]]), nrow = 1)
      M <- matrix(c(mean(c(this_row[["edge_xmin"]], this_row[["edge_xmax"]])),
                    mean(c(this_row[["edge_ymin"]], this_row[["edge_ymax"]]))), nrow = 1)
      radius <- dist(rbind(A, B))
      AB <- B-A
      N <- matrix(c(AB[2], -AB[1]), nrow=1)
      C <- M + .5*(N * tan((this_row[["curvature"]]/180)*pi))
      radius <- dist(rbind(C, A))
      angles <- list(
        atan2(c(this_row[["edge_ymin"]], this_row[["edge_ymax"]]) - C[2], c(this_row[["edge_xmin"]], this_row[["edge_xmax"]]) - C[1]),
        atan2(c(this_row[["edge_ymin"]], this_row[["edge_ymax"]]) - C[2], c(this_row[["edge_xmin"]], this_row[["edge_xmax"]]) - C[1]) %% (2*pi)
      )
      angles <- angles[[which.min(sapply(angles, dist))]]
      point_seq <- seq(angles[1], angles[2],length.out = npoints)
      out <- matrix(
        c(C[1] + radius * cos(point_seq),
          C[2] + radius * sin(point_seq),
          rep(rownum, npoints)),
        nrow = npoints, ncol = 3, dimnames = list(NULL, c("x", "y", "id"))
      )
      out
    }
  })))
  df$id <- 1:nrow(df)
  df_edges <- merge(df_edges, df, by = "id")
  # Prepare label df --------------------------------------------------------
  if(is.null(df[["label_location"]])){
    df$label_location <- .5
  }
  select_these <- middle_point <- table(df_edges$id)
  straightline <- middle_point == 3
  select_these[straightline] <- 2
  select_these[!straightline] <- ceiling(df$label_location[!straightline]*middle_point[!straightline])

  middle_point <- select_these+cumsum(c(0, middle_point[-length(middle_point)]))
  df_label <- df_edges[middle_point, ]
  df_label$label <- df$label
  df_label <- df_label[!(is.na(df_label$label) | df_label$label == ""), ]
  # Prepare aesthetics ------------------------------------------------------
  if(!"linetype" %in% names(df_edges)){
    df_edges$linetype <- 2
    df_edges$linetype[is.na(df_edges$curvature)] <- 1
  }
  if(any(df_edges$arrow == "curve")) stop("Arrow cannot be 'curve'.")
  p <- .plot_edges_internal(p, df_edges)
  # Add label and return ----------------------------------------------------
  .plot_label_internal(p, df_label, text_size)
}

#' @importFrom ggplot2 arrow
.plot_edges_internal <- function(p, df){
  # Prepare aesthetics ------------------------------------------------------
  if(!"linetype" %in% names(df)){
    df$linetype <- 2
    df$linetype[is.na(df$curvature)] <- 1
  }
  if(any(df$arrow != "none")){
    df_path <- df[!df$arrow == "none", ]
    aes_args <- c("id", "arrow", "linetype", "size", "colour", "color", "alpha")
    aes_args <- df_path[!duplicated(df_path$id), which(names(df_path) %in% aes_args)]
    Args <- list(
      data = df_path[, c("x", "y", "id")],
      mapping = aes_string(x = "x", y = "y", group = "id"),
      arrow = quote(ggplot2::arrow(angle = 25, length = unit(.1, "inches"), ends = "last", type = "closed")))

    for(this_path in unique(df_path$id)){
      Args$data <- df_path[df_path$id == this_path, ]
      Args$arrow[[4]] <- force(aes_args$arrow[aes_args$id == this_path])
      argslist <- c(Args, as.list(aes_args[aes_args$id == this_path, -c(1, 2), drop = FALSE]))
      if(nchar(argslist$linetype) == 1){
        argslist$linetype <- as.numeric(argslist$linetype)
      }
      p <- p + do.call(geom_path, argslist)
    }
  }
  if(any(df$arrow == "none")){
    df_path <- df[df$arrow == "none", ]
    Args <- c("linetype", "size", "colour", "color", "alpha")
    Args <- as.list(df_path[which(names(df_path) %in% Args)])
    Args <- c(list(
      data = df_path,
      mapping = aes_string(x = "x", y = "y", group = "id")),
      Args)
    p <- p + do.call(geom_path, Args)
  }
  p
}

.plot_label_internal <- function(p, df, text_size){
  retain_cols <- c("x", "y", "label", "group", "level")
  retain_cols <- retain_cols[which(retain_cols %in% names(df))]
  use_geom_text <- isTRUE("geom_text" %in% names(df))
  df <- df[, c(retain_cols, grep("^label_(fill|size|family|fontface|hjust|vjust|lineheight|colour|color|alpha)$", names(df), value = TRUE)), drop = FALSE]
  if(nrow(df) > 0){
    names(df) <- gsub("^label_", "", names(df))
    # Prepare aesthetics ------------------------------------------------------
    if(!"fill" %in% names(df)){
      df$fill = "white"
    }
    if(!"size" %in% names(df)){
      df$size <- text_size
    }
    #browser()
    Args <- c("fill", "size", "family", "fontface", "hjust", "vjust", "lineheight", "colour","color",  "alpha", "geom_text")
    Args <- as.list(df[which(names(df) %in% Args)])
    Args <- c(list(
      data = df,
      mapping = aes_string(x = "x", y = "y", label = "label"),
      label.size = NA
      ),
      Args)
    if(use_geom_text){
      Args$mapping <- aes_string(x = "x", y = "y", label = "label", customdata = "label")
      Args[c("geom_text", "fill", "label.size")] <- NULL
      p <- p + do.call(geom_text, Args)
    } else {
      p <- p + do.call(geom_label, Args)
    }

  }
  p
}

reposition_variances <- function(df_edges){
  variances <- df_edges$from == df_edges$to & df_edges$arrow == "both"
  variance_vars <- df_edges$from[variances]
  new_loc <- mapply(function(vv, vloc){
    tb <- table(c("top", "bottom", "left", "right",
                  df_edges$connect_from[df_edges$from == vv & !variances],
                  df_edges$connect_to[df_edges$to == vv & !variances]))
    if(tb[vloc] == 1){
      return(vloc)
    } else {
      tb <- names(tb)[which.min(tb)]
      return(tb[sample.int(length(tb), 1)])
    }
    }, vv = variance_vars, vloc = df_edges$connect_from[variances])
  df_edges$connect_from[variances] <- df_edges$connect_to[variances] <- new_loc
  return(df_edges)
}


bind_list <- function(L, ...){
  L <- L[which(!sapply(L, is.null))]
  all_names <- unique(unlist(lapply(L, names)))
  L <- lapply(L, function(x){
    x[setdiff(all_names, names(x))] <- NA
    x
  })
  Args <- c(L, list(...))
  do.call(rbind, Args)
}

Try the tidySEM package in your browser

Any scripts or data that you put into this service are public.

tidySEM documentation built on April 15, 2022, 1:06 a.m.