Nothing
#' Time Series Feature (Signature) Generator
#'
#' `step_timeseries_signature` creates a a *specification* of a recipe
#' step that will convert date or date-time data into many
#' features that can aid in machine learning with time-series data
#'
#' @param recipe A recipe object. The step will be added to the
#' sequence of operations for this recipe.
#' @param ... One or more selector functions to choose which
#' variables that will be used to create the new variables. The
#' selected variables should have class `Date` or
#' `POSIXct`. See [recipes::selections()] for more details.
#' For the `tidy` method, these are not currently used.
#' @param trained A logical to indicate if the quantities for
#' preprocessing have been estimated.
#' @param role For model terms created by this step, what analysis
#' role should they be assigned?. By default, the function assumes
#' that the new variable columns created by the original variables
#' will be used as predictors in a model.
#' @param columns A character string of variables that will be
#' used as inputs. This field is a placeholder and will be
#' populated once `recipes::prep()` is used.
#' @param skip A logical. Should the step be skipped when the recipe is
#' baked by bake.recipe()? While all operations are baked when prep.recipe()
#' is run, some operations may not be able to be conducted on new data
#' (e.g. processing the outcome variable(s)). Care should be taken when
#' using skip = TRUE as it may affect the computations for subsequent operations.
#' @param id A character string that is unique to this step to identify it.
#'
#' @return For `step_timeseries_signature`, an updated version of recipe with
#' the new step added to the sequence of existing steps (if any).
#' For the `tidy` method, a tibble with columns `terms`
#' (the selectors or variables selected), `value` (the feature
#' names).
#'
#' @seealso
#' Time Series Analysis:
#' - Engineered Features: [step_timeseries_signature()], [step_holiday_signature()], [step_fourier()]
#' - Diffs & Lags [step_diff()], `recipes::step_lag()`
#' - Smoothing: [step_slidify()], [step_smooth()]
#' - Variance Reduction: [step_box_cox()]
#' - Imputation: [step_ts_impute()], [step_ts_clean()]
#' - Padding: [step_ts_pad()]
#'
#' Main Recipe Functions:
#' - `recipes::recipe()`
#' - `recipes::prep()`
#' - `recipes::bake()`
#'
#'
#' @details
#'
#' __Date Variable__
#' Unlike other steps, `step_timeseries_signature` does *not*
#' remove the original date variables. [recipes::step_rm()] can be
#' used for this purpose.
#'
#' __Scaling index.num__
#' The `index.num` feature created has a large magnitude (number of seconds since 1970-01-01).
#' It's a good idea to scale and center this feature (e.g. use [recipes::step_normalize()]).
#'
#' __Removing Unnecessary Features__
#' By default, many features are created automatically. Unnecessary features can
#' be removed using [recipes::step_rm()].
#'
#' @examples
#' library(recipes)
#' library(dplyr)
#'
#' FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")
#'
#' # Create a recipe object with a timeseries signature step
#' rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
#' step_timeseries_signature(date)
#'
#' # View the recipe object
#' rec_obj
#'
#' # Prepare the recipe object
#' prep(rec_obj)
#'
#' # Bake the recipe object - Adds the Time Series Signature
#' bake(prep(rec_obj), FB_tbl)
#'
#' # Tidy shows which features have been added during the 1st step
#' # in this case, step 1 is the step_timeseries_signature step
#' tidy(rec_obj)
#' tidy(rec_obj, number = 1)
#'
#'
#'
#' @importFrom recipes rand_id
#' @export
step_timeseries_signature <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("timeseries_signature")
) {
recipes::add_step(
recipe,
step_timeseries_signature_new(
terms = recipes::ellipse_check(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_timeseries_signature_new <-
function(terms, role, trained, columns, skip, id) {
step(
subclass = "timeseries_signature",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_timeseries_signature <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, data = training, info = info)
recipes::check_type(training[, col_names], types = c("date", "datetime"))
step_timeseries_signature_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_timeseries_signature <- function(object, new_data, ...) {
# feature length - subtract index and diff columns (2 columns)
feat_len <- (tk_get_timeseries_signature(lubridate::ymd("2016-01-01")) %>% ncol()) - 2
# Build empty placeholder tibble to house the new features
new_cols <- rep(
feat_len,
each = length(object$columns)
)
date_values <- matrix(NA, nrow = nrow(new_data), ncol = sum(new_cols))
# Dummy column names to avoid tibble warning
colnames(date_values) <- as.character(seq_len(sum(new_cols)))
date_values <- tibble::as_tibble(date_values)
new_names <- vector("character", length = ncol(date_values))
# Loop through each date column adding features, filling the placeholder tibble
strt <- 1
for (i in seq_along(object$columns)) {
cols <- (strt):(strt + new_cols[i] - 1)
tmp <- getElement(new_data, object$columns[i]) %>%
tk_get_timeseries_signature() %>%
dplyr::select(-index, -diff)
date_values[, cols] <- tmp
new_names[cols] <- paste(
object$columns[i],
names(tmp),
sep = "_"
)
strt <- max(cols) + 1
}
names(date_values) <- new_names
new_data <- dplyr::bind_cols(new_data, date_values)
if (!tibble::is_tibble(new_data)) {
new_data <- tibble::as_tibble(new_data)
}
new_data
}
#' @export
print.step_timeseries_signature <-
function(x, width = max(20, options()$width - 29), ...) {
title <- "Timeseries signature features from "
recipes::print_step(x$columns, x$terms, x$trained, width = width, title = title)
invisible(x)
}
#' @rdname step_timeseries_signature
#' @param x A `step_timeseries_signature` object.
#' @export
tidy.step_timeseries_signature <- function(x, ...) {
features <- lubridate::ymd("2016-01-01") %>%
tk_get_timeseries_signature() %>%
dplyr::select(-index, -diff) %>%
colnames()
if (recipes::is_trained(x)) {
res <- expand.grid(
terms = x$columns,
value = features
)
} else {
term_names <- recipes::sel2char(x$terms)
res <- expand.grid(
terms = term_names,
value = features
)
}
res$id <- x$id
tibble::as_tibble(res)
}
#' @rdname required_pkgs.timetk
#' @export
required_pkgs.step_timeseries_signature <- function(x, ...) {
c("timetk")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.