Nothing
# plot fragments ----------------------------------------------------------
testthat::test_that("full pipeline", {
fsa_list <- lapply(cell_line_fsa_list, function(x) x$clone())
suppressWarnings(
find_ladders(fsa_list,
ladder_sizes = c(35, 50, 75, 100, 139, 150, 160, 200, 250, 300, 340, 350, 400, 450, 490, 500),
max_combinations = 2500000,
ladder_selection_window = 5,
show_progress_bar = FALSE
)
)
# plot_ladders(test_ladders[1:9], n_facet_col = 3,
# xlim = c(1000, 4800),
# ylim = c(0, 15000))
# # Start a PDF device
# pdf(file = "C:/Users/zlm2/Downloads/ladder.pdf", width = 12, height = 6) # Set width and height as desired
#
# # Loop through the list of plots
# for (i in seq_along(test_ladders)) {
# test_ladders[[i]]$plot_ladder(xlim = c(1400, 4500))
# }
#
# # Close the PDF device
# dev.off()
fragments_list <- find_fragments(fsa_list,
minimum_peak_signal = 20,
min_bp_size = 300
)
add_metadata(
fragments_list = fragments_list,
metadata_data.frame = metadata
)
find_alleles(
fragments_list = fragments_list
)
suppressMessages(
suppressWarnings(
call_repeats(
fragments_list = fragments_list,
)
)
)
# plot_traces(test_repeats[1:9], n_facet_col = 3,
# xlim = c(400, 550),
# ylim = c(0,2000))
# plot_fragments(test_repeats[1:4])
suppressMessages(
suppressWarnings(
assign_index_peaks(
fragments_list,
grouped = TRUE
)
)
)
suppressMessages(
suppressWarnings(
test_metrics_grouped <- calculate_instability_metrics(
fragments_list = fragments_list,
peak_threshold = 0.05,
window_around_index_peak = c(-40, 40)
)
)
)
# Left join
plot_data <- merge(test_metrics_grouped, metadata, by = "unique_id", all.x = TRUE)
# Filter
plot_data <- plot_data[plot_data$day > 0 & plot_data$modal_peak_signal > 500, ]
# Group by
plot_data <- split(plot_data, plot_data$metrics_group_id)
# Mutate
for (i in seq_along(plot_data)) {
plot_data[[i]]$rel_gain <- plot_data[[i]]$average_repeat_change / median(plot_data[[i]]$average_repeat_change[which(plot_data[[i]]$treatment == 0)])
}
plot_data <- do.call(rbind, plot_data)
# Revise genotype levels
plot_data$genotype <- factor(plot_data$genotype, levels = c("non-edited", "edited"))
# ggplot2::ggplot(plot_data,
# ggplot2::aes(as.factor(treatment), rel_gain,
# colour = as.factor(treatment))) +
# ggplot2::geom_boxplot(outlier.shape = NA) +
# ggplot2::geom_jitter() +
# ggplot2::facet_wrap(ggplot2::vars(genotype)) +
# ggplot2::labs(y = "Average repeat gain\n(relative to DMSO)",
# x = "Branaplam (nM)") +
# ggplot2::theme(legend.position = "none")
medians <- aggregate(rel_gain ~ treatment + genotype, plot_data, median, na.rm = TRUE)
expect_true(all(round(medians$rel_gain, 5) == c(1.00000, 0.86154, 0.73268, 0.55720)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.