# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/sagemaker/huggingface/test_estimator.py
context("huggingface")
library(sagemaker.core)
library(sagemaker.common)
library(sagemaker.mlcore)
DATA_DIR = file.path(getwd(), "data")
SCRIPT_PATH =file.path(DATA_DIR, "dummy_script.py")
SERVING_SCRIPT_FILE = "another_dummy_script.py"
SCRIPT_PATH =file.path(DATA_DIR, "dummy_script.py")
TAR_FILE <- file.path(DATA_DIR, "test_tar.tgz")
BIN_OBJ <- readBin(con = TAR_FILE, what = "raw", n = file.size(TAR_FILE))
MODEL_DATA = "s3://some/data.tar.gz"
ENV = list("DUMMY_ENV_VAR"="dummy_value")
TIMESTAMP = "2017-11-06-14:14:15.672"
TIME = 1510006209.073025
BUCKET_NAME = "mybucket"
INSTANCE_COUNT = 1
INSTANCE_TYPE = "ml.p2.xlarge"
ACCELERATOR_TYPE = "ml.eia.medium"
IMAGE_URI = "huggingface"
JOB_NAME = sprintf("%s-.*", IMAGE_URI)
ROLE = "Dummy"
REGION = "us-east-1"
GPU = "ml.p2.xlarge"
ENDPOINT_DESC = list("EndpointConfigName"="test-endpoint")
ENDPOINT_CONFIG_DESC = list("ProductionVariants"=list(list("ModelName"="model-1"), list("ModelName"="model-2")))
LIST_TAGS_RESULT = list("Tags"=list(list("Key"="TagtestKey", "Value"="TagtestValue")))
EXPERIMENT_CONFIG = list(
"ExperimentName"="exp",
"TrialName"="trial",
"TrialComponentDisplayName"="tc"
)
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
s3_client$.call_args("get_object", list(Body = BIN_OBJ))
sagemaker_client <- Mock$new()
describe = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/m.tar.gz"))
describe_compilation = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/model_c5.tar.gz"))
sagemaker_client$.call_args("describe_training_job", describe)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sagemaker_client$.call_args("list_tags", LIST_TAGS_RESULT)
sms$.call_args("default_bucket", BUCKET_NAME)
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-chainer-dummy"))
sms$.call_args("create_model", "sagemaker-chainer")
sms$.call_args("endpoint_from_production_variants", "sagemaker-chainer-endpoint")
sms$.call_args("logs_for_job")
sms$.call_args("wait_for_job")
sms$.call_args("wait_for_compilation_job", describe_compilation)
sms$.call_args("compile_model")
sms$s3 <- s3_client
sms$sagemaker <- sagemaker_client
return(sms)
}
.get_full_gpu_image_uri = function(version, base_framework_version){
return(ImageUris$new()$retrieve(
"huggingface",
REGION,
version=version,
py_version="py36",
instance_type=GPU,
image_scope="training",
base_framework_version=base_framework_version,
container_version="cu110-ubuntu18.04")
)
}
.create_train_job = function(version, base_framework_version, s3_inputs){
return(list(
"image_uri"=.get_full_gpu_image_uri(version, base_framework_version),
"input_mode"="File",
"input_config"= list(
list(
"DataSource"=list(
"S3DataSource"=list(
"S3DataType"="S3Prefix",
"S3Uri" = s3_inputs,
"S3DataDistributionType"="FullyReplicated"
)
),
"ChannelName"="training"
)
),
"role"=ROLE,
"job_name"=JOB_NAME,
"output_config"=list("S3OutputPath"=sprintf("s3://%s/",BUCKET_NAME)),
"resource_config"=list(
"InstanceCount"=1,
"InstanceType"=GPU,
"VolumeSizeInGB"=30),
"hyperparameters"=list(
"sagemaker_program"="dummy_script.py",
"sagemaker_container_log_level"="20",
"sagemaker_job_name"=JOB_NAME,
"sagemaker_submit_directory"=sprintf(
"s3://%s/%s/source/sourcedir.tar.gz", BUCKET_NAME, JOB_NAME),
"sagemaker_region"='us-east-1'),
"stop_condition"=list("MaxRuntimeInSeconds"=24 * 60 * 60),
"vpc_config"=NULL,
"debugger_hook_config"=list(
"S3OutputPath"=sprintf("s3://%s/",BUCKET_NAME),
"CollectionConfigurations"=list()
),
"profiler_rule_configs"=list(
list(
"RuleConfigurationName"="ProfilerReport-.*",
"RuleEvaluatorImage"="503895931360.dkr.ecr.us-east-1.amazonaws.com/sagemaker-debugger-rules:latest",
"RuleParameters"=list("rule_to_invoke"="ProfilerReport")
)
),
"profiler_config"=list(
"S3OutputPath"= sprintf("s3://%s/",BUCKET_NAME)
)
)
)
}
test_that("test huggingface invalid args", {
error_msg = "Please use either full version or shortened version for both transformers_version, tensorflow_version and pytorch_version."
expect_error(
HuggingFace$new(
py_version="py36",
entry_point=SCRIPT_PATH,
role=ROLE,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
transformers_version="4.2.1",
pytorch_version="1.6",
enable_sagemaker_metrics=FALSE
),
error_msg,
class="ValueError"
)
error_msg = "transformers_version, and image_uri are both NULL. Specify either transformers_version or image_uri"
expect_error(
HuggingFace$new(
py_version="py36",
entry_point=SCRIPT_PATH,
role=ROLE,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
pytorch_version="1.6",
enable_sagemaker_metrics=FALSE
),
error_msg,
class="ValueError"
)
error_msg = "tensorflow_version and pytorch_version are both NULL. Specify either tensorflow_version or pytorch_version."
expect_error(
HuggingFace$new(
py_version="py36",
entry_point=SCRIPT_PATH,
role=ROLE,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
transformers_version="4.2.1",
enable_sagemaker_metrics=FALSE
),
error_msg,
class="ValueError"
)
error_msg = "tensorflow_version and pytorch_version are both not NULL. Specify only tensorflow_version or pytorch_version."
expect_error(
HuggingFace$new(
py_version="py36",
entry_point=SCRIPT_PATH,
role=ROLE,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
transformers_version="4.2",
pytorch_version="1.6",
tensorflow_version="2.3",
enable_sagemaker_metrics=FALSE
),
error_msg,
class="ValueError"
)
})
test_that("test huggingface",{
huggingface_training_version="4.4"
huggingface_pytorch_version="1.6"
sms = sagemaker_session()
hf = HuggingFace$new(
py_version="py36",
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
transformers_version=huggingface_training_version,
pytorch_version=huggingface_pytorch_version,
enable_sagemaker_metrics=FALSE
)
inputs = "s3://mybucket/train"
hf$fit(inputs=inputs, experiment_config=EXPERIMENT_CONFIG)
expected_train_args = .create_train_job(
huggingface_training_version, sprintf("pytorch%s",huggingface_pytorch_version),inputs
)
expected_train_args[["experiment_config"]] = EXPERIMENT_CONFIG
expected_train_args[["enable_sagemaker_metrics"]] = FALSE
actual_train_args = sms$train(..return_value = T)
expect_identical(sort(names(expected_train_args)), sort(names(actual_train_args)))
exp_hp = expected_train_args[["hyperparameters"]]
act_hp = actual_train_args[["hyperparameters"]]
expected_train_args[["hyperparameters"]] = NULL
actual_train_args[["hyperparameters"]] = NULL
for(i in names(exp_hp)){
expect_true(grepl(exp_hp[[i]], act_hp[[i]]))
}
exp_RuleConfigurationName = expected_train_args[["profiler_rule_configs"]][[1]][["RuleConfigurationName"]]
act_RuleConfigurationName = actual_train_args[["profiler_rule_configs"]][[1]][["RuleConfigurationName"]]
expected_train_args[["profiler_rule_configs"]][[1]][["RuleConfigurationName"]] = NULL
actual_train_args[["profiler_rule_configs"]][[1]][["RuleConfigurationName"]] = NULL
expect_true(grepl(exp_RuleConfigurationName, act_RuleConfigurationName))
for (i in names(expected_train_args)){
if(i != "job_name") {
expect_identical(expected_train_args[[i]], actual_train_args[[i]])
} else {
expect_true(grepl(expected_train_args[[i]], actual_train_args[[i]]))
}
}
})
test_that("test attach", {
huggingface_pytorch_version = "1.6"
huggingface_training_version = "4.4"
training_image = sprintf(paste0(
"1.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:%s-",
"transformers%s-gpu-py36-cu110-ubuntu18.04"),
huggingface_pytorch_version, huggingface_training_version)
returned_job_description = list(
"AlgorithmSpecification"=list("TrainingInputMode"="File", "TrainingImage"=training_image),
"HyperParameters"=list(
"sagemaker_submit_directory"='s3://some/sourcedir.tar.gz',
"sagemaker_program"='iris-dnn-classifier.py',
"sagemaker_s3_uri_training"='sagemaker-3/integ-test-data/tf_iris',
"sagemaker_container_log_level"='INFO',
"sagemaker_job_name"='neo',
"training_steps"="100",
"sagemaker_region"='us-east-1'),
"RoleArn"="arn:aws:iam::366:role/SageMakerRole",
"ResourceConfig"=list(
"VolumeSizeInGB"=30,
"InstanceCount"=1,
"InstanceType"="ml.c4.xlarge"),
"StoppingCondition"=list("MaxRuntimeInSeconds"=24 * 60 * 60),
"TrainingJobName"="neo",
"TrainingJobStatus"="Completed",
"TrainingJobArn"="arn:aws:sagemaker:us-west-2:336:training-job/neo",
"OutputDataConfig"=list("KmsKeyId"="", "S3OutputPath"="s3://place/output/neo"),
"TrainingJobOutput"=list("S3TrainingJobOutput"="s3://here/output.tar.gz")
)
sms = sagemaker_session()
sms$sagemaker$.call_args("describe_training_job", returned_job_description)
hf=HuggingFace$new(
py_version="py36",
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
transformers_version=huggingface_training_version,
pytorch_version=huggingface_pytorch_version,
enable_sagemaker_metrics=FALSE
)
estimator = hf$attach(training_job_name="neo", sagemaker_session=sms)
expect_equal(estimator$latest_training_job, "neo")
expect_equal(estimator$py_version, "py36")
expect_equal(estimator$framework_version, huggingface_training_version)
expect_equal(estimator$pytorch_version, huggingface_pytorch_version)
expect_equal(estimator$role, "arn:aws:iam::366:role/SageMakerRole")
expect_equal(estimator$instance_count, 1)
expect_equal(estimator$max_run, 24 * 60 * 60)
expect_equal(estimator$input_mode, "File")
expect_equal(estimator$base_job_name, "neo")
expect_equal(estimator$output_path, "s3://place/output/neo")
expect_equal(estimator$output_kms_key,"")
expect_equal(estimator$hyperparameters()[["training_steps"]], "100")
expect_equal(estimator$source_dir, "s3://some/sourcedir.tar.gz")
expect_equal(estimator$entry_point, "iris-dnn-classifier.py")
})
test_that("test attach custom image", {
huggingface_training_version = "4.4"
huggingface_pytorch_version = "1.6"
training_image = "pytorch:latest"
returned_job_description = list(
"AlgorithmSpecification"=list("TrainingInputMode"="File", "TrainingImage"=training_image),
"HyperParameters"=list(
"sagemaker_submit_directory"='s3://some/sourcedir.tar.gz',
"sagemaker_program"='iris-dnn-classifier.py',
"sagemaker_s3_uri_training"='sagemaker-3/integ-test-data/tf_iris',
"sagemaker_container_log_level"='INFO',
"sagemaker_job_name"='neo',
"training_steps"="100",
"sagemaker_region"='us-east-1'),
"RoleArn"="arn:aws:iam::366:role/SageMakerRole",
"ResourceConfig"=list(
"VolumeSizeInGB"=30,
"InstanceCount"=1,
"InstanceType"="ml.c4.xlarge"),
"StoppingCondition"=list("MaxRuntimeInSeconds"=24 * 60 * 60),
"TrainingJobName"="neo",
"TrainingJobStatus"="Completed",
"TrainingJobArn"="arn:aws:sagemaker:us-west-2:336:training-job/neo",
"OutputDataConfig"=list("KmsKeyId"="", "S3OutputPath"="s3://place/output/neo"),
"TrainingJobOutput"=list("S3TrainingJobOutput"="s3://here/output.tar.gz")
)
sms = sagemaker_session()
sms$sagemaker$.call_args("describe_training_job", returned_job_description)
hf=HuggingFace$new(
py_version="py36",
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
transformers_version=huggingface_training_version,
pytorch_version=huggingface_pytorch_version,
enable_sagemaker_metrics=FALSE
)
estimator = hf$attach(training_job_name="neo", sagemaker_session=sms)
expect_equal(estimator$latest_training_job, "neo")
expect_equal(estimator$image_uri, training_image)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.