#' Title
#'
#' @param SC_obj You can also load RNA-seq use an existed Seruat object.
#' @param Spot_manifest The TIST results returned by function "Meta_St_img_unsupervised"
#' @param savePath The address where the results stored.
#' @param centre The covariance matrix of distance Gaussian kernel, we default element in covariance matrix is identical.
#' @param broad The mean of distance Gaussian kernel.
#' @param spaceFile The address where the local file of all spots is stored. Such as "spatial/tissue_positions_list.csv".
#' @param Maskfile The address where the Mask file is stored. Such as "/home/data/Imginit/mask.txt". You can use no mask to generate an all 1 matrix. The more recommended approach is generate this mask file use our python code in this package.
#' @param imagefile The address where the Image file is stored. Such as "/home/data/spatial/tissue_hires_image.png".
#' @param spot_r_min A min window to select Image features. Default is 12.
#' @param img_import The image feature weight for feature integration.
#' @param spot_r_max A max window to select Image features. Default is 20.
#' @param Step Control the step length of random walk for walkstrap method.
#' @param diffusion_rate The diffusion rate, is related to temperature, liquid viscosity, and molecular size.
#' @param netfile The TIST-net build by function "Meta_St_img_unsupervised"
#' @param cluster_num The number of init cluster for image. Default is 50.
#' @param geneenrichment Whether to perform gene enhancement analysis. Default True.
#' @param genelist if geneenrichment is True, the analysis gene list.
#'
#' @examples
#' \donttest{
#' Diffusion_net_analysis(SC_obj=SC_obj,
#' Spot_manifest = Spot_manifest_imgunsup,
#' savePath= savePath,
#' centre = 1,
#' broad = 2,
#' spaceFile=spaceFile,
#' Maskfile=Maskfile,
#' imagefile=imagefile,
#' spot_r_min = 12,
#' img_import = 1,
#' spot_r_max = 20,
#' Step = NULL,
#' diffusion_rate = dd,
#' netfile = netfile,
#' geneenrichment = T,
#' genelist = NULL)
#' }
#'
Diffusion_net_analysis <- function(SC_obj,
Spot_manifest,
savePath,
centre = 1,
broad = 1,
spaceFile,
Maskfile,
imagefile,
spot_r_min = 12,
img_import = 1,
spot_r_max = 20,
Step = 10,
diffusion_rate = 0.1,
enrichment_score = TRUE,
netfile,
cluster_num = 50,
geneenrichment = F,
genelist = NULL
){
img <- load.image(imagefile)
#image_info(img)
Mask <- read.table(file = Maskfile,sep = ',')
Mask <- as.matrix(Mask)
Mask <- as.cimg(t(Mask))
img_m <- img
R(img_m) <-R(img_m)*Mask
G(img_m) <-G(img_m)*Mask
B(img_m) <-B(img_m)*Mask
#grayscale(img_m) %>% hist(main="Luminance values in boats picture")
#R(img_m) %>% hist(main="Red channel values in boats picture")
#bdf <- as.data.frame(img_m)
#head(bdf,3)
#bdf <- mutate(bdf,channel=factor(cc,labels=c('R','G','B')))
#ggplot(bdf,aes(value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)
img_org <- img_m
im <- grayscale(img_org) %>% isoblur(2)
im <- im * Mask
#im <- imsharpen(im,2)
#im <- isoblur(im,10)
#im <- grayscale(img_org)
###cal marcov RF for im
mcim <- as.matrix(im)
SC_obj <- ScaleData(SC_obj)
#RenameCells(SC_obj,new.names = ST_filter_str(colnames(SC_obj),'-'))
expr_matrix <- as.matrix(SC_obj@assays$RNA@counts[VariableFeatures(SC_obj),])
colnames(expr_matrix) <- ST_filter_str(colnames(SC_obj),'-')
diffusion_matrix <- matrix(0,nrow = dim(expr_matrix)[1],ncol = dim(expr_matrix)[2])
space <- Spot_manifest
rownames(space) <- Spot_manifest$barcode
Count <- colMeans(expr_matrix)
for(i in 1:length(colnames(expr_matrix))){
this_node <- colnames(expr_matrix)[i]
dis <- abs(space$row-space[this_node,"row"])+abs(space$col-space[this_node,"col"])/2
dis_score <- centre * exp(-(dis*dis)/(broad*broad))
Dc <- Count-Count[i]
sc <- Dc * dis_score
sc[which(sc<0)] <- 0
if(sum(sc)==0) next
sc <- sc/sum(sc)
tm_diff_matrix <- apply(expr_matrix, 1, function(x){x*sc*diffusion_rate})
tm_diff_matrix <- t(tm_diff_matrix)
tm_diff_matrix[,i] <- expr_matrix[,i]*(1-diffusion_rate)
diffusion_matrix <- diffusion_matrix + tm_diff_matrix
}
diffusion_matrix <- round(diffusion_matrix)
if(F){
id <-diffusion_matrix["Spink8",]
#id <- Dc
id <- abs(id)
pltdat <- cbind(Spot_manifest[, c("imagerow","imagecol")],id)
colnames(pltdat)[1:2] <- c("y","x")
pltdat$y = -pltdat$y
xpand = 0
ypand = 1
pal <- colorRampPalette(c("#ADADAD", "#EEB4B4", "#7A378B"))
p <- ggplot(pltdat, aes(x = x, y = y, color = id)) + geom_point(size = 3)+ scale_color_gradientn(colours = pal(5)) +scale_x_discrete(expand = c(xpand, ypand)) + scale_y_discrete(expand = c(xpand, ypand)) + coord_equal() +
# labs(title = colnames(pd)[igene+2], x = NULL, y = NULL)+
theme_bw()
ggsave(filename = paste0(savePath, "/Diffusion_c1_b5/","Spink8_final.png"), p,
width = 8, height = 7, dpi = 500)
id <-SC_obj@assays$RNA@counts["Spink8",]
#id <- Dc
id <- abs(id)
pltdat <- cbind(Spot_manifest[, c("imagerow","imagecol")],id)
colnames(pltdat)[1:2] <- c("y","x")
pltdat$y = -pltdat$y
xpand = 0
ypand = 1
pal <- colorRampPalette(c("#ADADAD", "#EEB4B4", "#7A378B"))
p <- ggplot(pltdat, aes(x = x, y = y, color = id)) + geom_point(size = 3)+ scale_color_gradientn(colours = pal(5)) +scale_x_discrete(expand = c(xpand, ypand)) + scale_y_discrete(expand = c(xpand, ypand)) + coord_equal() +
# labs(title = colnames(pd)[igene+2], x = NULL, y = NULL)+
theme_bw()
ggsave(filename = paste0(savePath, "/Diffusion_c1_b5/","Spink8_before.png"), p,
width = 8, height = 7, dpi = 500)
}
if(FALSE){
id <-tm_diff_matrix["Spink8",]
#id <- Dc
#id[which(id==max(id))] = mean(id)
id <- abs(id)
pltdat <- cbind(Spot_manifest[, c("imagerow","imagecol")],id)
colnames(pltdat)[1:2] <- c("y","x")
pltdat$y = -pltdat$y
xpand = 0
ypand = 1
pal <- colorRampPalette(c("#ADADAD", "#EEB4B4", "#7A378B"))
p <- ggplot(pltdat, aes(x = x, y = y, color = id)) + geom_point(size = 3)+ scale_color_gradientn(colours = pal(5)) +scale_x_discrete(expand = c(xpand, ypand)) + scale_y_discrete(expand = c(xpand, ypand)) + coord_equal() +
# labs(title = colnames(pd)[igene+2], x = NULL, y = NULL)+
theme_bw()
ggsave(filename = paste0(savePath, "/Diffusion_c1_b5/",i,"Spink8.png"), p,
width = 8, height = 7, dpi = 500)
id <-dis_score
#id <- Dc
id <- abs(id)
pltdat <- cbind(Spot_manifest[, c("imagerow","imagecol")],id)
colnames(pltdat)[1:2] <- c("y","x")
pltdat$y = -pltdat$y
xpand = 0
ypand = 1
pal <- colorRampPalette(c("#ADADAD", "#EEB4B4", "#7A378B"))
p <- ggplot(pltdat, aes(x = x, y = y, color = id)) + geom_point(size = 3)+ scale_color_gradientn(colours = pal(5)) +scale_x_discrete(expand = c(xpand, ypand)) + scale_y_discrete(expand = c(xpand, ypand)) + coord_equal() +
# labs(title = colnames(pd)[igene+2], x = NULL, y = NULL)+
theme_bw()
ggsave(filename = paste0(savePath, "/Diffusion_c1_b5/",i,"_before.png"), p,
width = 8, height = 7, dpi = 500)
}
dir.create(paste0(savePath,"Diffusion","_d",diffusion_rate,"_b",broad))
savePath_ <- paste0(savePath,"Diffusion","_d",diffusion_rate,"_b",broad,"/")
saveRDS(diffusion_matrix,paste0(savePath_,"diffusion_matrix.RDS"))
#Diff_obj <- SC_obj
#colnames(diffusion_matrix) <- colnames(expr_matrix)
colnames(diffusion_matrix) <- ST_filter_str(colnames(diffusion_matrix),'-')
TPM <- as.matrix(diffusion_matrix)
TPM <- as(TPM, "sparseMatrix")
Diff_obj <- CreateSeuratObject(diffusion_matrix)
label <- readRDS(paste0(savePath,"McRFlabel.RDS"))
expr_obj_scale <- Diff_obj
expr_obj_scale <- NormalizeData(expr_obj_scale)
#expr_obj_scale <- FindVariableFeatures(expr_obj_scale)
expr_obj_scale <- ScaleData(expr_obj_scale)
expr_obj_scale <- RunPCA(expr_obj_scale,features = rownames(expr_obj_scale))
expr_obj_scale <- FindNeighbors(expr_obj_scale)
cellcorr <- as.matrix(expr_obj_scale@graphs$RNA_snn)
colnames(cellcorr) <- ST_filter_str(colnames(cellcorr),'-')
rownames(cellcorr) <- ST_filter_str(rownames(cellcorr),'-')
#expr_data <- as.matrix(expr_obj_scale@assays$RNA@data)
expr_data <- expr_obj_scale@assays$RNA@scale.data
Spot_space <- read.csv(file = spaceFile,header = F)
sel.cols <- c("barcode","tissue", "row", "col", "imagerow", "imagecol")
colnames(Spot_space) <- sel.cols
Spot_space$barcode <- ST_filter_str(Spot_space$barcode,'-')
colnames(expr_obj_scale@assays$RNA@scale.data) <- ST_filter_str(colnames(expr_obj_scale@assays$RNA@scale.data),'-')
Spot_space <- Spot_space[which(Spot_space$barcode%in%colnames(expr_obj_scale@assays$RNA@scale.data)),]
Spot_manifest <- Spot_space
#sample_bar <- Spot_manifest$barcode[1:100]
#Spot_manifest <- Spot_manifest[1:100,]
#Spot_manifest <- Spot_manifest[sort(Spot_manifest$col,index.return=TRUE)$ix,]
#Spot_manifest <- Spot_manifest[sort(Spot_manifest$row,index.return=TRUE)$ix,]
nodes <- Spot_manifest[,c("barcode")]
nodes <- cbind(1:length(nodes),nodes)
nodes <- data.frame(nodes)
colnames(nodes) <- c("id","name")
edges <- data.frame()
#tm_matrix <- as.matrix(grayscale(img_org))
#cellcorr <- cellcorr[which(rownames(cellcorr)%in%sample_bar),which(colnames(cellcorr)%in%sample_bar)]
#tm_matrix <- as.matrix(im)
tm_matrix <- as.matrix(label)
tm_matrix_org <- as.matrix(im)
col <- array(c("#f5f5f5",getDefaultColors(n = 400)))
rownames(col) <- c(0,1:400)
len <- length(colnames(cellcorr))
sample_id <- which(cellcorr>=0.05)
for(td in 1:length(sample_id)){
tt <- sample_id[td]
i = ceiling(tt/len)
j = tt%%len
if(j==0) j = len
if(i<=j) next
idx <- which(Spot_manifest$barcode==colnames(cellcorr)[i])
idy <- which(Spot_manifest$barcode==colnames(cellcorr)[j])
xi <- Spot_manifest$row[idx]
yi <- Spot_manifest$col[idx]
xj <- Spot_manifest$row[idy]
yj <- Spot_manifest$col[idy]
ximgrow = round(Spot_manifest[idx,"imagerow"]*sacle_score)
ximgcol = round(Spot_manifest[idx,"imagecol"]*sacle_score)
yimgrow = round(Spot_manifest[idy,"imagerow"]*sacle_score)
yimgcol = round(Spot_manifest[idy,"imagecol"]*sacle_score)
distodis = abs(xj-xi)+abs(yj-yi)#
M1 = tm_matrix[(ximgcol-spot_r_max):(ximgcol+spot_r_max),(ximgrow-spot_r_max):(ximgrow+spot_r_max)]
M2 = tm_matrix[(yimgcol-spot_r_max):(yimgcol+spot_r_max),(yimgrow-spot_r_max):(yimgrow+spot_r_max)]
if(length(which(M1>0))==0) next
if(length(which(M2>0))==0) next
M1_v <- hist(as.vector(M1)[which(as.vector(M1)>0)],breaks = seq(0,cluster_num,length.out = cluster_num),plot = F)$counts/sum( hist(as.vector(M1)[which(as.vector(M1)>0)],breaks = seq(0,cluster_num,length.out = cluster_num),plot = F)$counts)
M2_v <- hist(as.vector(M2)[which(as.vector(M2)>0)],breaks = seq(0,cluster_num,length.out = cluster_num),plot = F)$counts/sum( hist(as.vector(M2)[which(as.vector(M2)>0)],breaks = seq(0,cluster_num,length.out = cluster_num),plot = F)$counts)
weight_1 <- 1-max(min(distance(rbind(M1_v,M2_v),method = 'kullback-leibler',test.na = F,mute.message = T),1))
M1 = tm_matrix[(ximgcol-spot_r_min):(ximgcol+spot_r_min),(ximgrow-spot_r_min):(ximgrow+spot_r_min)]
M2 = tm_matrix[(yimgcol-spot_r_min):(yimgcol+spot_r_min),(yimgrow-spot_r_min):(yimgrow+spot_r_min)]
M1_v <- hist(as.vector(M1)[which(as.vector(M1)>0)],breaks = seq(0,cluster_num,length.out = cluster_num),plot = F)$counts/sum( hist(as.vector(M1)[which(as.vector(M1)>0)],breaks = seq(0,cluster_num,length.out = cluster_num),plot = F)$counts)
M2_v <- hist(as.vector(M2)[which(as.vector(M2)>0)],breaks = seq(0,cluster_num,length.out = cluster_num),plot = F)$counts/sum( hist(as.vector(M2)[which(as.vector(M2)>0)],breaks = seq(0,cluster_num,length.out = cluster_num),plot = F)$counts)
weight_2 <- 1-max(min(distance(rbind(M1_v,M2_v),method = 'kullback-leibler',test.na = F,mute.message = T),1))
M1 = tm_matrix_org[(ximgcol-spot_r_max):(ximgcol+spot_r_max),(ximgrow-spot_r_max):(ximgrow+spot_r_max)]
M2 = tm_matrix_org[(yimgcol-spot_r_max):(yimgcol+spot_r_max),(yimgrow-spot_r_max):(yimgrow+spot_r_max)]
M1_v <- as.vector(M1)[which(as.vector(M1)>0)]
M2_v <- as.vector(M2)[which(as.vector(M2)>0)]
mean_diff_max <- abs(mean(M1_v)-mean(M2_v))*255
M1 = tm_matrix_org[(ximgcol-spot_r_min):(ximgcol+spot_r_min),(ximgrow-spot_r_min):(ximgrow+spot_r_min)]
M2 = tm_matrix_org[(yimgcol-spot_r_min):(yimgcol+spot_r_min),(yimgrow-spot_r_min):(yimgrow+spot_r_min)]
M1_v <- as.vector(M1)[which(as.vector(M1)>0)]
M2_v <- as.vector(M2)[which(as.vector(M2)>0)]
mean_diff_min <- abs(mean(M1_v)-mean(M2_v))*255
weight_3 <- min(1,1/(mean_diff_max + mean_diff_min + 1))
weight <- min((cellcorr[i,j]+img_import*0.5*(weight_1+weight_2+weight_3))/(img_import+1),1)
weight <- min(weight*10/distodis,1) #
#weight <- cellcorr[i,j] + weight*3/distodis
edges <- rbind(edges,c(nodes$id[which(nodes$name==colnames(cellcorr)[i])],nodes$id[which(nodes$name==colnames(cellcorr)[j])],weight))
}
colnames(edges) <- c("from","to","weight")
edges <- unique(edges)
edges$weight <- as.numeric(edges$weight)
ST_net <- graph_from_data_frame(
d = edges,
vertices = nodes,
directed = F)
saveRDS(ST_net,file = paste0(savePath_,"ST_imgunsupnet.RDS"))
expr_data <- expr_obj_scale@assays$RNA@scale.data
#hist(E(ST_net)$weight[which(E(ST_net)$weight>0.01)])
expr_info_matrix <- t(expr_data)
search_map <- list(c(2,0),c(-1,-1),c(1,-1),c(-2,0),c(-1,1),c(1,1))
if(is.null(Step)){
step_testlist <- 1:50
step_testSDbw <- rep(0,50)
discrete_points_num <- rep(0,50)
I_Score <- rep(0,50)
step_c_dis <- rep(0,50)
c_num <- rep(0,50)
for(i in 1:50){
net_walktrap_test<-walktrap.community(ST_net,weights=abs(E(ST_net)$weight),step=i)
walktrap_id <- cbind(net_walktrap_test$names,net_walktrap_test$membership)
walktrap_id <- as.data.frame(walktrap_id)
colnames(walktrap_id) <- c("barcode","Walktrap_id")
Spot_manifest_t <- merge(Spot_manifest,walktrap_id,by.x = "barcode",by.y = "barcode")
sort(table(walktrap_id$Walktrap_id))
Spot_manifest_t$Walktrap_id <- as.numeric(Spot_manifest_t$Walktrap_id)
use_set <- names(table(Spot_manifest_t$Walktrap_id))[which(table(Spot_manifest_t$Walktrap_id)>5)]
Spot_manifest_t$Walktrap_id[which(!Spot_manifest_t$Walktrap_id%in%use_set)] <- 0
Spot_manifest_t$Walktrap_id <- Renamedomin(namelist = Spot_manifest_t$Walktrap_id)
c_num[i] <- length(table(Spot_manifest_t$Walktrap_id))
#Number of discrete points
for(k in 1:dim(Spot_manifest_t)[1]){
xrow = Spot_manifest_t[k,"row"]
xcol = Spot_manifest_t[k,"col"]
ld <- Spot_manifest_t[k,"Walktrap_id"]
tm = 0;
for(j in 1:length(search_map)){
yrow = xrow + search_map[[j]][1]
ycol = xcol + search_map[[j]][2]
id <- which(Spot_manifest_t$row==yrow & Spot_manifest_t$col==ycol)
if(length(id)==0) tm = tm+1
if(length(id)!=0){
if(as.numeric(Spot_manifest_t[id,"Walktrap_id"])!=ld) tm=tm+1
}
}
if(tm==6) discrete_points_num[i] = discrete_points_num[i] + 1
}
step_testSDbw[i] <- modularity(net_walktrap_test)
step_c_dis[i] <- (c_num[i] /discrete_points_num[i] )
I_Score[i] <- step_testSDbw[i] + step_c_dis[i]
Spot_manifest_t$Walktrap_id <- as.character(Spot_manifest_t$Walktrap_id)
ST_meta_plot_tm <- ggplot(Spot_manifest_t, aes(x = imagecol, y = -imagerow, color = Walktrap_id)) + geom_point(size = 2) +
scale_colour_manual(values = col) + scale_x_discrete(expand = c(0.09,0.09)) + scale_y_discrete(expand = c(0.09,0.09)) + coord_equal() + theme_bw() +
xlab("x") + ylab("y")+ theme( legend.position = "none" )
ggsave(filename = paste0(savePath_, "/ST_meta_imgunsup_plot_Step_",i,"_C",c_num[i],".png"), ST_meta_plot_tm,
width = 8, height = 7, dpi = 500)
}
score_df <- cbind(c_num,step_testSDbw,I_Score,discrete_points_num)
score_df <- as.data.frame(score_df)
saveRDS(score_df,file = paste0(savePath_,"score_df.rds"))
score_df <- score_df[sort(score_df$c_num,index.return=TRUE,decreasing = T)$ix,]
attach(score_df)
tm <- aggregate(score_df, by=list(c_num = score_df$c_num), FUN = max)
png(file =paste0(savePath_,"Iscore.png"))
plot(tm$c_num,tm$I_Score,type = "o",col = "red", xlab = "c_num", ylab = "I_Score",
main = "I_Score")
dev.off()
png(file =paste0(savePath_,"step_clusternum_imgunsup.png"))
plot(tm$c_num,tm$c_num,type = "o",col = "blue", xlab = "c_num", ylab = "c_num",
main = "c_num")
dev.off()
png(file =paste0(savePath_,"SDbw_imgunsup.png"))
plot(tm$c_num,tm$step_testSDbw,type = "o",col = "red", xlab = "c_num", ylab = "SDbw_img",
main = "SDbw_img")
dev.off()
png(file =paste0(savePath_,"discrete_points_num.png"))
plot(tm$c_num,tm$discrete_p,type = "o",col = "red", xlab = "c_num", ylab = "discrete_p",
main = "discrete_points_num")
dev.off()
Step = which.max(I_Score)
message("Step=",Step)
}
net_walktrap<-walktrap.community(ST_net,weights=E(ST_net)$weight,steps = Step,merges = T)
#dendPlot(net_walktrap)
walktrap_id <- cbind(net_walktrap$names,net_walktrap$membership)
walktrap_id <- as.data.frame(walktrap_id)
colnames(walktrap_id) <- c("barcode","Walktrap_id")
Spot_manifest <- merge(Spot_manifest,walktrap_id,by.x = "barcode",by.y = "barcode")
sort(table(walktrap_id$Walktrap_id))
Spot_manifest$Walktrap_id <- as.numeric(Spot_manifest$Walktrap_id)
use_set <- names(table(Spot_manifest$Walktrap_id))[which(table(Spot_manifest$Walktrap_id)>2)]
Spot_manifest$Walktrap_id[which(!Spot_manifest$Walktrap_id%in%use_set)] <- 0
use_set <- names(table(Spot_manifest$Walktrap_id))[which(table(Spot_manifest$Walktrap_id)>2)]
Spot_manifest$Walktrap_id[which(!Spot_manifest$Walktrap_id%in%use_set)] <- 1
Spot_manifest$Walktrap_id <- Renamedomin(namelist = Spot_manifest$Walktrap_id)
Spot_manifest$Walktrap_id <- as.character(Spot_manifest$Walktrap_id)
ST_meta_plot <- ggplot(Spot_manifest, aes(x = imagecol, y = -imagerow, color = Walktrap_id)) + geom_point(size = 2) +
scale_colour_manual(values = col) + scale_x_discrete(expand = c(0.09,0.09)) + scale_y_discrete(expand = c(0.09,0.09)) + coord_equal() + theme_bw() +
xlab("x") + ylab("y")+ theme( legend.position = "none" )
ggsave(filename = file.path(savePath_, "/ST_meta_imgunsup_plot.png"), ST_meta_plot,
width = 8, height = 7, dpi = 500)
Spot_manifest$Walktrap_id <- as.character(Spot_manifest$Walktrap_id)
saveRDS(Spot_manifest,file = paste0(savePath_,"Spot_manifest_imgunsup.RDS"))
write.csv(Spot_manifest,file = paste0(savePath_,"Spot_manifest_imgunsup.csv"))
#score
#tm <- I_score(netfile,membership(net_walktrap),savePath_,Spot_manifest,savefile = "SD_Iscore")
tm <- SCmethod_score(label_file, Spot_manifest)
#SNN
Diff_obj_ <- Diff_obj
Diff_obj_ <- FindVariableFeatures(Diff_obj_)
Diff_obj_ <- ScaleData(Diff_obj_)
Diff_obj_ <- RunPCA(Diff_obj_)
Diff_obj_ <- FindNeighbors(Diff_obj_)
snn_result <- FindClusters(Diff_obj_)
idd <- as.double(Idents(snn_result))
Spot_manifest[,7] <- idd
id <- as.character(Idents(snn_result))
pltdat <- cbind(Spot_manifest[, c("imagerow","imagecol")],id)
colnames(pltdat)[1:2] <- c("y","x")
pltdat$y = -pltdat$y
xpand = 0
ypand = 1
pal <- colorRampPalette(c("#ADADAD", "#EEB4B4", "#7A378B"))
cols_ <- array(getDefaultColors(length(table(id))))
ST_meta_plot_tm <- ggplot(pltdat, aes(x = x, y = y, color = id)) + geom_point(size = 2) +
scale_colour_manual(values = cols_) + scale_x_discrete(expand = c(0.09,0.09)) + scale_y_discrete(expand = c(0.09,0.09)) + coord_equal() + theme_bw() +
xlab("x") + ylab("y")+ theme( legend.position = "none" )
ggsave(filename = paste0(savePath_, "SNN.png"), ST_meta_plot_tm,
width = 8, height = 7, dpi = 500)
names(idd) <- ST_filter_str(colnames(snn_result),'-')
#tm <- rbind(tm,I_score(netfile,idd,savePath_,Spot_manifest,savefile = "SNN_Iscore"))
tm <- rbind(tm,SCmethod_score(label_file, Spot_manifest))
#gene_plot
if(geneenrichment){
if(is.null(genelist)){
genelist = c('Spink8',
'Slc17a6',
'Kcne2',
'Prkcd',
'Crlf1',
'Slc6a11',
'Ctxn3',
'Baiap3',
'Cbln4',
'Mfge8',
'Gpx3',
'Fam163b',
'Hap1',
'Rora',
'1110008P14Rik',
'Meig1',
'Arpp21',
'Ndn',
'Cabp7',
'Adarb1',
'Ttr',
'Mbp',
'Rarres2',
'Ptgds',
'Lrrc10b',
'Dsp',
'Mef2c',
'Adcy1',
'Atp2b1',
'Neurod6',
'6330403K07Rik',
'Amotl1',
'Snap25',
'Dynlrb2',
'Lamp5',
'Tbr1',
'Ramp3',
'Resp18',
'C1ql2',
'Agt',
'Plp1',
'Folr1',
'Camk2n1',
'Cfh',
'Camk2a',
'Rasgrf2',
'Mgp',
'Ccdc153',
'Mobp',
'Ahi1',
'Cbln1',
'Nptxr',
'Arpc5',
'Tmem212',
'Col1a2',
'Hpcal1',
'Klk8',
'Ddn',
'Lypd1',
'3110035E14Rik',
'Hpca',
'Kl',
'Icam5',
'Neurl1a',
'Dclk1',
'Mal',
'Epop',
'Enpp2',
'Tcf7l2',
'Slc6a13',
'Cnp',
'Zcchc12',
'Sparc')
}
genelist <- intersect(rownames(Diff_obj),genelist)
Plot_all_resnet(SC_obj,
netfile = paste0(savePath_,"ST_imgunsupnet.RDS"),
Diff_obj = expr_obj_scale,
Spot_manifest,
savePath_,
gene_name_list = genelist,
gene_plot = T)
}
return(Spot_manifest)
}
I_score <- function(netfile, idents, savePath, Spot_manifest,savefile = "I_score"){
search_map <- list(c(2,0),c(-1,-1),c(1,-1),c(-2,0),c(-1,1),c(1,1))
net <- readRDS(netfile)
cluster_score <- modularity(net,membership = idents)
tid <- data.frame(barcode = names(idents),id = as.vector(idents))
#Number of discrete points
Spot_manifest <- merge(Spot_manifest,tid,by.x = "barcode",by.y = "barcode")
cc <- length(table(Spot_manifest$id))
discrete_points_num <- 0
for(k in 1:dim(Spot_manifest)[1]){
xrow = Spot_manifest[k,"row"]
xcol = Spot_manifest[k,"col"]
ld <- Spot_manifest[k,"id"]
tm = 0
for(j in 1:length(search_map)){
yrow = xrow + search_map[[j]][1]
ycol = xcol + search_map[[j]][2]
id <- which(Spot_manifest$row==yrow & Spot_manifest$col==ycol)
if(length(id)==0) tm = tm+1
if(length(id)!=0){
if(as.numeric(Spot_manifest[id,"id"])!=ld) tm=tm+1
}
}
if(tm==6) discrete_points_num = discrete_points_num + 1
}
I_score <- cluster_score + (cc/discrete_points_num )
tm <- data.frame(cluster_num = cc, discrete_points_num = discrete_points_num, modulatrity_score = cluster_score,Iscore = I_score)
write.csv(tm,paste0(savePath,savefile,".csv"))
saveRDS(tm,paste0(savePath,savefile,".RDS"))
return(tm)
}
gene_recover_diffusion <- function(SC_obj,netfile,Diff_obj,Spot_manifest,savePath,gene_name,gene_plot = F){
ST_net <- readRDS(file = netfile)
SC_obj <- NormalizeData(SC_obj)
colnames(SC_obj@assays$RNA@data) <- ST_filter_str(colnames(SC_obj),'-')
expr_data <- SC_obj@assays$RNA@data[gene_name,]
names(expr_data) <- colnames(SC_obj@assays$RNA@data)
#x_o <- as.vector(expr_data+0.1)
x_o <- as.vector(expr_data[which(expr_data>0.1)])
res_o <- fitdistr(x_o,"lognormal")
observed_hist <- hist(x_o,breaks = 10,plot = F)
xfit <-seq(min(x_o), max(x_o), by=(max(x_o)-min(x_o))/length(x_o))
yfit_o <-dlnorm(xfit,res_o[[1]][1], res_o[[1]][2])
yfit_o <- yfit_o*diff(observed_hist$mids[1:2])*length(xfit)
#lines(xfit, yfit_o, col="blue", lwd=2)
l_o <- yfit_o - 1*sqrt(vcov(res_o)[1,1]+0.1)
u_o <- yfit_o + 1*sqrt(vcov(res_o)[1,1]+0.1)
#calculate expected plot
#cfg <- cluster_fast_greedy(ST_net)
nodes <- V(ST_net)[Spot_manifest$barcode]
#g <- induced_subgraph(ST_net, nodes)
#png(filename=paste0(savePath,Mc_name,"circle_plot.png"), width=500, height=500)
#plot(g,layout = layout_in_circle)
#dev.off()
g <- ST_net
x_e <- Diff_obj@assays$RNA@data[gene_name,]
names(x_e) <- ST_filter_str(colnames(Diff_obj@assays$RNA@data),'-')
x_e <- x_e+0.1
#x_e <- x_e[which(x_e>0.1)]
drop_matrix <- x_e
space <- Spot_manifest
rownames(space) <- Spot_manifest$barcode
x_o <- drop_matrix
x_tm <- drop_matrix
nodes <- V(ST_net)[Spot_manifest$barcode]
space <- Spot_manifest
rownames(space) <- Spot_manifest$barcode
for(i in 1:dim(space)[1]){
this_node <- names(x_o)[i]
#this_n <- neighbors(ST_net,this_node)
this_e <- E(g)[inc(this_node)]
gs <- subgraph.edges(g,this_e)
this_enode <- gs %>% ends(E(gs))
if(dim(this_enode)[1]>1){
for(t in 1:length(this_e)){
if(this_enode[t,1]==this_node) x_o[i] <- x_o[i] + this_e[t]$weight*x_tm[this_enode[t,2]]
if(this_enode[t,2]==this_node) x_o[i] <- x_o[i] + this_e[t]$weight*x_tm[this_enode[t,1]]
}
}
x_o[i] <- x_o[i]/sum(this_e$weight)
}
message(gene_name)
saveRDS(x_o,paste0(savePath,gene_name,"_enhance.RDS"))
x_e <- as.vector(x_o)
res_e <- fitdistr(x_e,"lognormal")
expected_hist <- hist(x_e,breaks = 10,plot = F)
yfit_e <-dlnorm(xfit,res_e[[1]][1], res_e[[1]][2])
yfit_e <- yfit_e*diff(expected_hist$mids[1:2])*length(xfit)
#lines(xfit, yfit_e, col="blue", lwd=2)
l_e <- yfit_e - 1*sqrt(vcov(res_e)[1,1]+0.1)
u_e <- yfit_e + 1*sqrt(vcov(res_e)[1,1]+0.1)
mashi_dis <- mashi(a = yfit_e,b = yfit_o)
KL_dis <- kl.dist(yfit_e,yfit_o)$D
dat_plot_spot<- data.frame(xfit, yfit_o, l_o, u_o,yfit_e,l_e,u_e)
if(gene_plot==T){
tm_e <- data.frame(barcode = names(x_o),x_e = x_e)
pltdat <- merge(Spot_manifest,tm_e, by.x = "barcode", by.y = "barcode")
pltdat <- pltdat[, c("imagerow","imagecol","x_e")]
colnames(pltdat)[1:2] <- c("y","x")
pltdat$y = -pltdat$y
pal <- colorRampPalette(c("mediumseagreen", "lightyellow2", "deeppink"))
xpand = 0
ypand = 1
gpt <- ggplot(pltdat, aes(x = x, y = y, color = x_e)) + geom_point(size = 3) +
# scale_color_gradientn(colours=pal(5))+
scale_color_gradientn(colours = pal(5)) + scale_x_discrete(expand = c(xpand, ypand)) + scale_y_discrete(expand = c(xpand, ypand)) + coord_equal() +
# labs(title = colnames(pd)[igene+2], x = NULL, y = NULL)+
theme_bw()+guides(fill=guide_legend(title=" "))
ggsave(filename = paste0(savePath,gene_name,"_after.png"),
gpt, width = 7, height = 10, dpi = 150, limitsize = FALSE)
tm_e <- data.frame(barcode = names(x_o),d_matrix = drop_matrix)
pltdat <- merge(Spot_manifest,tm_e, by.x = "barcode", by.y = "barcode")
pltdat <- pltdat[, c("imagerow","imagecol","d_matrix")]
colnames(pltdat)[1:2] <- c("y","x")
pltdat$y = -pltdat$y
pal <- colorRampPalette(c("mediumseagreen", "lightyellow2", "deeppink"))
xpand = 0
ypand = 1
gpt <- ggplot(pltdat, aes(x = x, y = y, color = d_matrix)) + geom_point(size = 3) +
# scale_color_gradientn(colours=pal(5))+
scale_color_gradientn(colours = pal(5)) + scale_x_discrete(expand = c(xpand, ypand)) + scale_y_discrete(expand = c(xpand, ypand)) + coord_equal() +
# labs(title = colnames(pd)[igene+2], x = NULL, y = NULL)+
theme_bw()+guides(fill=guide_legend(title=" "))
ggsave(filename = paste0(savePath,gene_name,"_before.png"),
gpt, width = 7, height = 10, dpi = 150, limitsize = FALSE)
}
return(list(Mahal = round(mashi_dis, 2),KL = round(KL_dis, 2)))
}
Plot_all_resnet <- function(SC_obj,
netfile,
Diff_obj,
Spot_manifest,
savePath,
gene_name_list,
gene_plot = F){
#gene_name_list <- intersect(gene_name_list,VariableFeatures(SC_obj))
#KL_matrix <- array(0,dim = c(length(gene_name_list), 1))
#Mahal_matirx <- array(0,dim = c(length(gene_name_list), 1))
KL_matrix <- c()
Mahal_matirx <- c()
for(i in 1:length(gene_name_list)){
gene_name <- gene_name_list[i]
ans <- gene_recover_diffusion(SC_obj,netfile,Diff_obj,Spot_manifest,savePath,gene_name,gene_plot)
KL_matrix <- c(KL_matrix,ans$KL)
Mahal_matirx <- c(Mahal_matirx,ans$Mahal)
}
names(KL_matrix) <- gene_name_list
names(Mahal_matirx) <- gene_name_list
KL_matrix[which(KL_matrix>1)] = 1
saveRDS(Mahal_matirx,paste0(savePath,"Mahal_matirx.RDS"))
saveRDS(KL_matrix,paste0(savePath,"KL_matrix.RDS"))
write.csv(Mahal_matirx,paste0(savePath,"Mahal_matirx.csv"))
write.csv(KL_matrix,paste0(savePath,"KL_matrix.csv"))
}
mashi <-function(a,b){
return (((a-b)%*% t(t(a-b))) / cov(a,b))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.