Description Usage Arguments Details Value Note Author(s) References See Also Examples
The functions define the Power Exponential distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS
fitting using the function gamlss()
.
The functions dPE
, pPE
, qPE
and rPE
define the density, distribution function,
quantile function and random generation for the specific parameterization of the power exponential distribution
showing below.
The functions dPE2
, pPE2
, qPE2
and rPE2
define the density, distribution function,
quantile function and random generation of a standard parameterization of the power exponential distribution.
1 2 3 4 5 6 7 8 9 10 | PE(mu.link = "identity", sigma.link = "log", nu.link = "log")
dPE(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pPE(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qPE(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rPE(n, mu = 0, sigma = 1, nu = 2)
PE2(mu.link = "identity", sigma.link = "log", nu.link = "log")
dPE2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pPE2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qPE2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rPE2(n, mu = 0, sigma = 1, nu = 2)
|
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of kurtosis parameter |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Power Exponential distribution (PE) is defined as
f(y|mu,sigma,nu)=(1/sigma)*(nu*exp(-0.5*|z/c|^nu))/(c*2^(1+1/nu)*Gamma(1/nu))
where c=[2^(-2/nu)Gamma(1/nu)/Gamma(3/nu)]^0.5, for y=(-Inf,+Inf), μ=(-Inf,+Inf), σ>0 and ν>0. This parametrization was used by Nelson (1991) and ensures mu is the mean and sigma is the standard deviation of y (for all parameter values of mu, sigma and nu within the rages above)
Thw Power Exponential distribution (PE2) is defined as
f(y|mu,sigma,nu)=(nu *exp(-abs(z)^2))/(2*sigma*Gamma(1/nu))
returns a gamlss.family
object which can be used to fit a Power Exponential distribution in the gamlss()
function.
mu is the mean and sigma is the standard deviation of the Power Exponential distribution
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby
Nelson, D.B. (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 57, 347-370.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
1 2 3 4 5 6 7 8 9 10 11 12 13 | PE()# gives information about the default links for the Power Exponential distribution
# library(gamlss)
# data(abdom)
# h1<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=PE, data=abdom) # fit
# h2<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=PE2, data=abdom) # fit
# plot(h1)
# plot(h2)
# leptokurtotic
plot(function(x) dPE(x, mu=10,sigma=2,nu=1), 0.0, 20,
main = "The PE density mu=10,sigma=2,nu=1")
# platykurtotic
plot(function(x) dPE(x, mu=10,sigma=2,nu=4), 0.0, 20,
main = "The PE density mu=10,sigma=2,nu=4")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.