Description Usage Arguments Details Value Note Author(s) References See Also Examples
There are 5 different skew t distributions implemented in GAMLSS.
The Skew t type 1 distribution, ST1
, is based on Azzalini (1986).
The skew t type 2 distribution, ST2
, is based on Azzalini and Capitanio (2003).
The skew t type 3 , ST3
and ST3C
, distribution is based Fernande and Steel (1998).
The difference betwwen the ST3
and ST3C
is that the first is written entirely in R
while
the second is in C
.
The skew t type 4 distribution , ST4
, is a spliced-shape distribution.
The skew t type 5 distribution , ST5
, is Jones and Faddy (2003).
The SST
is a reparametrised version of dST3
where sigma
is the standard deviation of the distribution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log")
dST1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2)
ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2)
ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST3(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10)
ST3C(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST3C(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST3C(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST3C(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST3C(n, mu = 0, sigma = 1, nu = 1, tau = 10)
SST(mu.link = "identity", sigma.link = "log", nu.link = "log",
tau.link = "logshiftto2")
dSST(x, mu = 0, sigma = 1, nu = 0.8, tau = 7, log = FALSE)
pSST(q, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE)
qSST(p, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE)
rSST(n, mu = 0, sigma = 1, nu = 0.8, tau = 7)
ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST4(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10)
ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST5(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1)
|
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of |
sigma |
vector of scale parameter values |
nu |
vector of |
tau |
vector of |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
... |
for extra arguments |
f(y|mu,sigma,nu,tau)=z/sigma f_z1(z)F_z2(w)
for -Inf<y<Inf, where z=(y-mu)/sigma, w=nu*sqrt(lambda)*z, lambda=(tau+1)/(tau+z*z) and z_1 ~ TF(01,1,tau) and z_2 ~ TF(0,1,tau+1).
The probability density function of the skew t distribution type q, (ST3
), is defined in Chapter 10 of the
GAMLSS manual.
The probability density function of the skew t distribution type q, (ST4
), is defined in Chapter of the
GAMLSS manual.
The probability density function of the skew t distribution type 5, (ST5
), is defined as
f(y|mu,sigma,nu,tau)=(1/c)*(1+(z/(a+b+z^2)^0.5))^(a+0.5)*(1-(a+b+z^2)^0.5)^(b+0.5)
where c=2^(a+b-1)*(a+b)^0.5 *B(a,b), and Gamma(a)*Gamma(b)/Gamma(a+b) and (y-mu)/sigma and nu=(a-b)/(a*b*(a+b))^0.5 and tau=2/(a+b) for -Inf<y<Inf, -Inf<mu<Inf, σ>0, -Inf<nu<Inf and tau>0.
ST1()
, ST2()
, ST3()
, ST4()
and ST5()
return a gamlss.family
object
which can be used to fit the skew t type 1-5 distribution in the gamlss()
function.
dST1()
, dST2()
, dST3()
, dST4()
and dST5()
give the density functions,
pST1()
, pST2()
, pST3()
, pST4()
and pST5()
give the cumulative distribution functions,
qST1()
, qST2()
, qST3()
, qST4()
and qST5()
give the quantile function, and
rST1()
, rST2()
, rST3()
, rST4()
and rST3()
generates random deviates.
The mean of the ex-Gaussian is mu+nu and the variance is sigma^2+nu^2.
Bob Rigby and Mikis Stasinopoulos
Azzalini A. (1986) Futher results on a class of distributions which includes the normal ones, Statistica, 46, pp. 199-208.
Azzalini A. and Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65, pp. 367-389.
Jones, M.C. and Faddy, M. J. (2003) A skew extension of the t distribution, with applications. Journal of the Royal Statistical Society, Series B, 65, pp 159-174.
Fernandez, C. and Steel, M. F. (1998) On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93, pp. 359-371.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
1 2 3 4 5 6 7 8 9 10 11 |
y<- rST5(200, mu=5, sigma=1, nu=.1)
hist(y)
curve(dST5(x, mu=30 ,sigma=5,nu=-1), -50, 50, main = "The ST5 density mu=30 ,sigma=5,nu=1")
# library(gamlss)
# m1<-gamlss(y~1, family=ST1)
# m2<-gamlss(y~1, family=ST2)
# m3<-gamlss(y~1, family=ST3)
# m4<-gamlss(y~1, family=ST4)
# m5<-gamlss(y~1, family=ST5)
# GAIC(m1,m2,m3,m4,m5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.