ZABB: Zero inflated and zero adjusted Binomial distribution for...

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

The function ZIBB defines the zero inflated beta binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIBB, pZIBB, qZIBB and rZINN define the density, distribution function, quantile function and random generation for the zero inflated beta binomial, ZIBB, distribution.

The function ZABB defines the zero adjusted beta binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZABB, pZABB, qZABB and rZABB define the density, distribution function, quantile function and random generation for the zero inflated beta binomial, ZABB(), distribution.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
ZABB(mu.link = "logit", sigma.link = "log", nu.link = "logit")
ZIBB(mu.link = "logit", sigma.link = "log", nu.link = "logit")

dZIBB(x, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, log = FALSE)
dZABB(x, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, log = FALSE)

pZIBB(q, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)
pZABB(q, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)

qZIBB(p, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)
qZABB(p, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)

rZIBB(n, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1)
rZABB(n, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1)

Arguments

mu.link

Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log)

sigma.link

Defines the sigma.link, with "log" link as the default for the sigma parameter.

nu.link

Defines the sigma.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log)

x

vector of (non-negative integer) quantiles

mu

vector of positive probabilities

sigma

vector of positive dispertion parameter

nu

vector of positive probabilities

bd

vector of binomial denominators

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

For the definition of the distributions see Rigby and Stasinopoulos (2010) below.

Value

The functions ZIBB and ZABB return a gamlss.family object which can be used to fit a zero inflated or zero adjusted beta binomial distribution respectively in the gamlss() function.

Author(s)

Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see http://www.gamlss.org/)

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

See Also

gamlss.family, NBI, NBII

Examples

1
2
3
4
5
6
7
ZIBB() 
ZABB()
# creating data and plotting them 
 dat <- rZIBB(1000, mu=.5, sigma=.5, nu=0.1, bd=10)
   r <- barplot(table(dat), col='lightblue')
dat1 <- rZABB(1000, mu=.5, sigma=.2, nu=0.1, bd=10)
   r1 <- barplot(table(dat1), col='lightblue')

Stan125/gamlss.dist documentation built on May 12, 2019, 7:38 a.m.