ZABI: Zero inflated and zero adjusted Binomial distribution for...

Description Usage Arguments Details Value Note Author(s) References See Also Examples

Description

The ZABI() function defines the zero adjusted binomial distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZABI, pZABI, qZABI and rZABI define the density, distribution function, quantile function and random generation for the zero adjusted binomial, ZABI(), distribution.

The ZIBI() function defines the zero inflated binomial distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIBI, pZIBI, qZIBI and rZIBI define the density, distribution function, quantile function and random generation for the zero inflated binomial, ZIBI(), distribution.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
 ZABI(mu.link = "logit", sigma.link = "logit")
dZABI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE)
pZABI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZABI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZABI(n, bd = 1, mu = 0.5, sigma = 0.1)

 ZIBI(mu.link = "logit", sigma.link = "logit")
dZIBI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE)
pZIBI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIBI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIBI(n, bd = 1, mu = 0.5, sigma = 0.1)

Arguments

mu.link

Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log)

sigma.link

Defines the sigma.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog"'(complementary log-log)

x

vector of (non-negative integer) quantiles

mu

vector of positive probabilities

sigma

vector of positive probabilities

bd

vector of binomial denominators

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

For the definition of the distributions see Rigby and Stasinopoulos (2010) below.

Value

The functions ZABI and ZIBI return a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Note

The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures.

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see http://www.gamlss.org/)

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

See Also

gamlss.family, BI

Examples

1
2
3
4
5
6
7
8
9
ZABI() 
curve(dZABI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rZABI(1000, mu=.2, sigma=.3, bd=10))
r <- barplot(tN, col='lightblue')

ZIBI() 
curve(dZIBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rZIBI(1000, mu=.2, sigma=.3, bd=10))
r <- barplot(tN, col='lightblue')

Stan125/gamlss.dist documentation built on May 12, 2019, 7:38 a.m.