# TEST SCRIPT
library(magrittr)
library(readxl)
library(tidyverse)
library(mmtravis)
library(data.table)
tab <- fread(
file = "test/counts_CP361.txt",
header = T,
stringsAsFactors = F,
check.names = F)
metaVars <- c("Genome","Contig","Gene_start","Strand","Inference","Contig_len","ftype","length","Gene","EC_number","COG","product","locus_tag","function")
# Prepare the gene data.
genedata <- select(tab,1,2) %>%
separate(.,
col = 2,
into = metaVars,
sep = "[|]",
remove = T) %>%
as.data.frame()
# Prepare the count table.
counttab <- select(tab,-2) %>%
as.data.frame()
# Metadata.
metadata <- read_excel("test/CP361_metadata.xlsx") %>%
mutate(Samplename = paste0("S",Samplename)) %>%
mutate(SEQID_2 = ifelse(is.na(SEQID_2),"",SEQID_2))
# As we have two batches, we need to reshape metadata.
bch1 <- metadata %>% select(-SEQID_2) %>% dplyr::rename(SEQID = SEQID_1) %>% mutate(batch = "1")
bch2 <- subset(metadata,SEQID_2 != "") %>% select(-SEQID_1) %>% dplyr::rename(SEQID = SEQID_2) %>% mutate(batch = "2")
metadata2 <- rbind(bch1,bch2)
### Load data.
mt <- mt_loadMetaT(
counts.txt = "test/counts_CP361.txt",
seqstat.txt = "test/seqstat_CP361.txt",
mtmeta = metadata2)
mt <- mt_load(mtdata = counttab,mtgene = genedata,mtmeta = metadata2)
### Test functions. ############################################################
# Subset.
wh <- subset(metadata2,batch == 2)$Samplename %>%
paste0(.,collapse = "','") %>%
paste0("Samplename %in% c('",.,"')")
batch <- mt_subset(mt,sub_samples = wh)
gat <- mt_gather(mt,metavars = "MetaTrans")
de <- mt_subset2(mt,minreads = 20,frac0 = 0.5,normalise = "TPM",
sub_genes = "Contig == '1'",
sub_samples = "VFA == 'Acetate'")
de <- mt_subset2(mt,sub_genes = "Contig == '1'")
mt_plotpairs(mt,samples = c("HQ180523_1","HQ180523_2"),label_by = "Label",linesize = 2)
hest <- mt_gather(mt)
de_bch <- mt_batch(de,batch = "VFA")
de <- mt_stackbar(mt,detailed = T,group_by = "MetaTrans")
data("example_mmt")
# Plot all samples (might take some time)
mt_plotpairs(example_mmt)
# Plot replicates to see correlation.
mt_plotpairs(example_mmt,samples = c("HQ180323_13","HQ180323_14"),label_by = "Replicate")
# Ordination.
vis_ordinate(mt,
sample_color_by = "Genus",
sample_shape_by = "Replicate")
# Boxplotting.
# Let's plot some random genes.
wh <- example_mmt$mtdata$GeneID[c(1,22,11,53)]
vis_boxplot(example_mmt,
group_by = "Type",
boxgroup_by = "Organism",
row_show = 10,
row_labels = "product",
title_newline = T)
vis_boxplot(AalborgWWTPs,group_by = "Period")
# Differential expression stuff.
DE_mt <- mt_diffexprs(mt,
group = "Experiment",
row_labels = c("GeneID","product"),
intercept = "mAlg")
mt_res <- mt_dumpDE(DE_mt,num = "mPec",denom = "mAlg",title_size = 10)
mt_res$BOXplot + scale_y_log10()
mt_res$MAplot
# Load data.
data("example_mmt")
# Compute the statistics.
DE_mt <- mt_diffexprs(example_mmt,
group = "Type",
row_labels = c("GeneID","product"),
intercept = "ANAMMOX")
# Extract results for given levels.
mt_res <- mt_dumpDE(DE_mt,num = "ELECTRODE",denom = "SUSPENTION",title_size = 8)
# Show the output.
mt_res$MAplot
mt_res$BOXplot
head(mt_res$Table)
# Enrichment analysis.
# Suppose we have a set of genes which want to test for functional enrichment.
Genes <- sample(mt$mtgene$GeneID,size = 1000)
head(Genes)
COGenrich <- mt_enrichCOG(mt,
GeneIDs = Genes,
COGs = "COG",
alternative = "two.sided",
show_p = 1,
size_p = 4,
unannotated = F)
COGenrich$plot
CP460 <- readRDS("../../../../DNASense ApS Dropbox/DNASense/CP/cp-ongoing/CP460 [BASF Metatranscriptomics]/analysis/output/mt_object.rds")
CP460_CDS <- mt_subset(CP460,sub_genes = "ftype != 'intergenic_region'")
Genes <- mt_subset(CP460,sub_genes = "Genome == 'Bin1'")$mtgene$GeneID
KOenrich <- mt_enrichKO(CP460,
GeneIDs = Genes,
type = "reaction",
KOs = "KO",
alternative = "two.sided",
size_p = 4,
show_p = 1,
unannotated = F)
KOenrich$plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.