R/mcmc.2pno.ml.R

Defines functions mcmc.2pno.ml

Documented in mcmc.2pno.ml

## File Name: mcmc.2pno.ml.R
## File Version: 3.20
##############################################
# MCMC estimation 2PNO model
mcmc.2pno.ml <- function(dat, group,
        link="logit",
        est.b.M="h", est.b.Var="n",
        est.a.M="f", est.a.Var="n",
        burnin=500, iter=1000, N.sampvalues=1000,
        progress.iter=50, prior.sigma2=c(1,.4 ),
        prior.sigma.b=c(1,1), prior.sigma.a=c(1,1),
        prior.omega.b=c(1,1), prior.omega.a=c(1,.4),
        sigma.b.init=.3 )
{
    ##############################
    # INPUT:
    # describe input in help files
    ##############################
    s1 <- Sys.time()
    # data preparation
    dat0 <- dat
    dat <- as.matrix(dat)
    dat[ is.na(dat0) ] <- 0
    dat.resp <- 1-is.na(dat0)
    N <- nrow(dat)
    I <- ncol(dat)
    eps <- 10^(-10)
    #***
    # groups
    groups <- sort( unique(group) )
    idgroup <- as.numeric( match( group, groups ) )
    G <- length(groups)
    groupsize <- as.numeric( rowsum( 1+0*group, idgroup )[,1] )

    #***
    # set initial values
    a <- rep(1,I)
    if (link=="logit"){
        b <- - stats::qnorm( (colMeans(dat0, na.rm=TRUE) + .01 )/1.02 )
                        }
    if (link=="normal"){b <- - colMeans( dat0, na.rm=TRUE ) }
    eps.bG <- bG <- matrix( stats::rnorm( G*I, sd=sigma.b.init ),  G, I )
    aG <- eps.aG <- 0*bG
    sigma.res <- rep(1,I)
    if (link=="normal"){
        sigma.res <- apply( dat0, 2, stats::sd, na.rm=TRUE)
        Z <- dat
                }
    sigma.b <- rep( sigma.b.init, I )
    sigma.a <- rep( .5, I )
    # hyperparameters for items
    omega.b <- if ( est.b.M=="h"){ 2 } else { 1000 }
    mu.b <- 0
    omega.a <- if ( est.a.M=="h"){ 1 } else { 1000 }
    mu.a <- 1
    # item parameters in matrix form
    aM <- matrix( a, nrow=N, ncol=I, byrow=TRUE)
    bM <- matrix( b, nrow=N, ncol=I, byrow=TRUE) + bG[ idgroup, ]
    aM.chainsum <- bM.chainsum <- 0*bM
    if (link=="logit"){
        theta <- stats::qnorm( ( rowMeans( dat0,na.rm=TRUE ) + .01 ) / 1.02 )
                        }
    if (link=="normal"){
        theta <-  ( rowMeans( dat0,na.rm=TRUE ) + .01 ) / 1.02
                        }
    theta <- theta - mean( theta )
    # theta level 2 part
    theta2 <- rep( stats::rnorm( G, sd=.2 ), groupsize )
    # inits Level 1 and Level 2 standard deviations
    sigma1 <- sqrt( .7 )
    sigma2 <- sqrt(.3)
    # residual standard deviation (only applies in model with normal data)
    sigma.res <- apply( dat0, 2, stats::sd, na.rm=TRUE ) * .8
    #***
    # define lower and upper thresholds
    ZZ <- 1000
    threshlow <- -ZZ + ZZ*dat
    threshlow[ is.na(dat0) ] <- -ZZ
    threshupp <- ZZ*dat
    threshupp[ is.na(dat0) ] <- ZZ
    # saved values
    SV <- min( N.sampvalues, iter - burnin )
    svindex <- round( seq( burnin, iter, len=SV ) )
    a.chain <- matrix( NA, SV, I )
    b.chain <- matrix( NA, SV, I )
    sigma.res.chain <- sigma.a.chain <- sigma.b.chain <- matrix( NA, SV, I )
    theta.chain <- matrix( NA, SV, N )
    theta2.chain <- matrix( NA, SV, G )
    # standard deviations
    sigma2.chain <- sigma1.chain <- rep( NA, SV )    # theta Level 1
    omega.a.chain <- mu.b.chain <- omega.b.chain <- rep(NA, SV )

    deviance.chain <- rep(NA, SV)
    zz <- 0
    #**********************
    # begin iterations
    for (ii in 1:iter){

        #****
        # draw latent data Z
        if (link=="logit"){
            Z <- .draw.Z.2pno.ml( aM, bM, theta, N, I, threshlow, threshupp )
                        }

        #***
        # draw latent traits theta (total)
        theta <- .draw.theta.2pno.ml( aM, b, bM, N, I, Z,
                sigma1, sigma2, sigma.res, link, theta2, idgroup  )

        #***
        # draw latent group means (level 2 effects)
        theta2 <- .draw.theta2.2pno.ml( theta, idgroup, groupsize,
                        sigma1, sigma2, G )

        #***
        # draw level 1 and level 2 theta variances
        res <- .draw.sigma12.2pno.ml( theta, theta2, idgroup, N,
                G, prior.sigma2 )
        sigma1 <- res$sigma1
        sigma2 <- res$sigma2


        #***
        # draw item groupwise parameters b (est.b.Var="j" or est.b.Var="i")
        if ( est.b.Var %in% c("i","j")){

            # sampling of b parameters
            b <- .mcmc.est.b.2pno.ml.v2( N,Z, aM, theta, idgroup, groupsize,
                                        b, bG, G, I, sigma.b, omega.b,
                                        mu.b, sigma.res, link )
            # sampling of groupwise b item parameters
            bG <- .mcmc.est.b.group.2pno.ml( Z, aM, theta, idgroup, groupsize,
                    b, G, I, sigma.b, sigma.res, link, N  )
            # sampling of sigma.b
            sigma.b <- .mcmc.sigma.b.2pno.ml( bG, mu.b, omega.b, G, I,
                est.b.Var, prior.sigma.b, sigma.b )
            # define item parameters in a matrix
            bM <- matrix(b,N,I,byrow=TRUE) + bG[ idgroup, ]

                }
        #***
        # draw item difficulties (est.b.Var="n")
        # single level case
        if ( est.b.Var=="n"){
            b <- .draw.est.b.sl(Z, aM, theta, N, I, omega.b, mu.b,
                sigma.res, link )
            bM <- matrix( b, nrow=N, ncol=I, byrow=TRUE)
                        }

        # draw hyperparameters of b (independent of est.b.Var)
        res <- .draw.est.b.hyperpars( b, mu.b, omega.b, I,
                  prior.omega.b, est.b.M  )
        mu.b <- res$mu.b
        omega.b <- res$omega.b

        ##################################
        # sampling of a parameters
        if ( est.a.M !="f" ){
            #****
            # draw a item parameters group wise
            if ( est.a.Var %in% c("i","j")){

                # sampling of a parameters
                a <- .mcmc.a.est.a.2pno.ml( Z, bM, aG, idgroup, theta,
                        mu.a, omega.a, I, link, sigma.res  )

                # sampling of groupwise a parameters
                aG <- .mcmc.est.aG.2pno.ml.v2( Z, bM, theta, idgroup, G, I,
                        a, sigma.a, N, link, sigma.res )

                # sampling of standard deviations of random item
                # discrimination effects
                sigma.a <- .mcmc.a.grouphier.2pno.ml( aG, mu.a, G, omega.a, I,
                            prior.sigma.a, est.a.Var, sigma.a )
                # calculate total item discrimination
                aM <- matrix( a, N, I, byrow=TRUE ) + aG[ idgroup, ]
                                            }
            #***
            # draw a item parameters (single level estimation)
            if ( est.a.Var=="n"){
                a <- .draw.est.a.sl( Z, bM, theta, mu.a, omega.a, I,
                        sigma.res, link)
                aM <- matrix( a, nrow=N, ncol=I, byrow=TRUE)
                        }

            # draw hyperparameters of a
            res <- .draw.est.a.hyperpars( a, mu.a, omega.a, I,
                    prior.omega.a, est.a.M  )
            omega.a <- res$omega.a
                            }

        # draw residual standard deviations for link="normal"
        if (link=="normal"){
            sigma.res <- .draw.sigma.res.2pno.ml( Z, aM, bM, theta, N, I )
                    }

        # save parameters
        if ( ii %in% svindex ){
            zz <- zz+1
            a.chain[ zz, ] <- a
            b.chain[ zz, ] <- b
            theta.chain[ zz, ] <- theta
            theta2.chain[ zz, ] <- theta2
            if (link=="logit"){
                deviance.zz <- .mcmc.deviance.2pl( aM, bM, theta, dat,
                        dat.resp,     weights=NULL, eps )
                            }
            if (link=="normal"){
                deviance.zz <- .mcmc.deviance.normallink.2pno.ml( aM, bM,
                        theta, N, I, dat, dat.resp, sigma.res )
                                }
            deviance.chain[zz] <- deviance.zz
            sigma1.chain[zz] <- sigma1
            sigma2.chain[zz] <- sigma2
            sigma.b.chain[zz,] <- sigma.b
            sigma.a.chain[zz,] <- sigma.a
            mu.b.chain[zz]    <- mu.b
            omega.b.chain[zz] <- omega.b
            omega.a.chain[zz] <- omega.a
            if (link=="normal"){
                sigma.res.chain[zz,] <- sigma.res
            }
            # sum b and a parameters
            bM.chainsum <- bM.chainsum + bM
            aM.chainsum <- aM.chainsum + aM
        }
        # print progress
        if ( ( ii %% progress.iter )==0 ){
            cat( "Iteration", ii, " | ", paste(Sys.time()), "\n")
            utils::flush.console()
        }
    }

    ##############################
    # output
    # Information criteria
    ic <- .mcmc.ic.2pno.ml( aM.chainsum, bM.chainsum, theta.chain, N, I,
                dat, dat.resp, eps, deviance.chain, groupsize,
                sigma.res.chain, link )

    # EAP reliability and person parameter estimates (okay!)
    res <- .mcmc.person.2pno.ml( theta.chain, weights=NULL )
    EAP.rel <- res$EAP.rel
    person <- res$person

    #-----
    # create MCMC object
    mcmcobj <- .mcmc.mcmclist.2pno.ml( a.chain, b.chain, deviance.chain,
        sigma1.chain, sigma2.chain, I, SV, burnin, iter,
        est.b.M, mu.b.chain, omega.b.chain, sigma.b.chain, est.b.Var,
        est.a.M, est.a.Var, omega.a.chain, sigma.a.chain,
        sigma.res.chain, link )

    #----
    # summary of the MCMC output
    summary.mcmcobj <- mcmc.list.descriptives( mcmcobj )

    # time
    s2 <- Sys.time()
    time <- list( "start"=s1, "end"=s2, "timediff"=s2-s1 )
    # description
    if ( link=="logit"){ description <- "2PNO Multilevel Model" }
    if ( link=="normal"){ description <- "Normal Multilevel Model" }
    #----
    # result list
    res <- list( mcmcobj=mcmcobj, summary.mcmcobj=summary.mcmcobj,
            ic=ic, burnin=burnin, iter=iter,
            theta.chain=theta.chain, theta2.chain=theta2.chain,
            deviance.chain=deviance.chain,
            EAP.rel=EAP.rel, person=person, dat=dat0,
            time=time, model='2pno.ml', description=description )
    class(res) <- "mcmc.sirt"
    return(res)
}
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.