R/mcmc.2pno.ml_output.R

Defines functions .mcmc.person.2pno.ml .mcmc.deviance.normallink.2pno.ml .mcmc.mcmclist.2pno.ml .mcmc.ic.2pno.ml

## File Name: mcmc.2pno.ml_output.R
## File Version: 1.15

######################################################
# subfunction for calculating the DIC
.mcmc.ic.2pno.ml <- function( aM.chainsum, bM.chainsum, theta.chain, N, I,
        dat, dat.resp,eps, deviance.chain, groupsize,
        sigma.res.chain, link ){
    #************
    weights <- NULL
#    aM <- matrix( colMeans( a.chain ), nrow=N, ncol=I, byrow=TRUE )
#    bM <- matrix( colMeans( b.chain ), nrow=N, ncol=I, byrow=TRUE )
    SV <- nrow(theta.chain )
    aM <- aM.chainsum / SV
    bM <- bM.chainsum / SV
    theta <- colMeans( theta.chain )
    if (link=="logit"){
        Dhat <- .mcmc.deviance.2pl( aM, bM, theta, dat, dat.resp,
                    weights, eps )
                        }
    if (link=="normal"){
        sigma.res <- as.vector(colMeans( sigma.res.chain ) )
        Dhat <- .mcmc.deviance.normallink.2pno.ml( aM, bM,
                        theta, N, I, dat, dat.resp, sigma.res )
                        }
    Dbar <- mean( deviance.chain )
    pD <- Dbar - Dhat
    ic <- list( "Dhat"=Dhat, "Dbar"=Dbar, "pD"=pD, "DIC"=Dhat + 2*pD )
    # group statistics
    ic$G <- length(groupsize)
    ic$M.n <- mean(groupsize)
    ic$SD.n <- stats::sd(groupsize)
    return(ic)
        }
#######################################################
# mcmc.list output object
.mcmc.mcmclist.2pno.ml <- function( a.chain, b.chain, deviance.chain,
    sigma1.chain, sigma2.chain, I, SV, burnin, iter, est.b.M,
    mu.b.chain, omega.b.chain, sigma.b.chain, est.b.Var,
    est.a.M, est.a.Var, omega.a.chain, sigma.a.chain,
    sigma.res.chain, link    ){
    #****
    a <- a.chain
    b <- b.chain
    colnames(a) <- paste0("a[", 1:I, "]")
    colnames(b) <- paste0("b[", 1:I, "]")
    mcmcobj <- cbind( deviance.chain, b )
    # include a parameters
    if( max( apply( a, 2, stats::sd) ) > 0 ){
        mcmcobj <- cbind( mcmcobj, a )
                }
    colnames(mcmcobj)[1] <- "deviance"
    mcmcobj <- cbind(  mcmcobj, "sigma1"=sigma1.chain,
            "sigma2"=sigma2.chain )
    ICC <- sigma2.chain^2 / ( sigma2.chain^2 + sigma1.chain^2 )
    mcmcobj <- cbind( mcmcobj, "ICC"=ICC )
    if ( est.b.M=="h"){ mcmcobj <- cbind( mcmcobj,
                "mu.b"=mu.b.chain, "omega.b"=omega.b.chain )
                        }
    #*** est.b.Var
    if ( est.b.Var %in% c("i") ){
        colnames(sigma.b.chain) <- paste0("sigma.b[", 1:I,"]")
        mcmcobj <- cbind( mcmcobj, sigma.b.chain )
                            }
    if ( est.b.Var=="j" ){
        mcmcobj <- cbind( mcmcobj, "sigma.b"=sigma.b.chain[,1] )
                            }
    #**** est.a.Var
    if ( est.a.M !="f"){
        if ( est.a.Var=="i" ){
            colnames(sigma.a.chain) <- paste0("sigma.a[", 1:I,"]")
            mcmcobj <- cbind( mcmcobj, sigma.a.chain )
                                }
        if ( est.a.Var=="j" ){
            mcmcobj <- cbind( mcmcobj, "sigma.a"=sigma.a.chain[,1] )
                                }
                        }
    if ( est.a.M=="h"){ mcmcobj <- cbind( mcmcobj,
                 "omega.a"=omega.a.chain )
                        }
    if ( link=="normal" ){
        colnames(sigma.res.chain) <- paste0("sigma.res[", 1:I,"]")
        mcmcobj <- cbind( mcmcobj, sigma.res.chain )
                            }
    class(mcmcobj) <- "mcmc"
    attr(mcmcobj, "mcpar") <- c( burnin+1, burnin+SV, 1 )
    mcmcobj <- sirt_import_coda_as.mcmc.list( mcmcobj )
    return(mcmcobj)
        }
######################################################
# calculating the deviance under the normal link function
.mcmc.deviance.normallink.2pno.ml <- function( aM, bM,
        theta, N, I, dat, dat.resp, sigma.res ){
    mexp <- aM*theta - bM
    mres <- dat - mexp
    llres <- - sum( dat.resp *
        log( sirt_dnorm( mres, sd=matrix( sigma.res, N, I, byrow=TRUE ) )    ) )
    return(llres)
        }


####################################################################
# calculate EAP reliability, person parameter EAPs
# and corresponding posterior SDs
.mcmc.person.2pno.ml <- function( theta.chain, weights ){
    ###################
    # EAP reliability
        v1 <- stats::var( colMeans( theta.chain ) )
        if ( is.null(weights) ){
            weights <- rep(1,ncol(theta.chain)) }
        w1 <- weights / sum(weights )
        m1 <- colMeans( theta.chain )
        v1 <- sum( m1^2 * w1 ) - ( sum( m1*w1 ) )^2
        wM <- matrix( w1, nrow=nrow(theta.chain), ncol=ncol(theta.chain), byrow=TRUE )
        h1 <- rowSums( wM * theta.chain^2 ) - ( rowSums( wM * theta.chain ) )^2
        h1 <- mean(h1)
        EAP.rel <- v1 / h1
    ###################
    # person parameter estimates
    person <- data.frame( "EAP"=colMeans( theta.chain ),
                        "SD"=colSds(theta.chain) )
    # output
    res <- list( "EAP.rel"=EAP.rel, "person"=person )
    return(res)
            }
###############################################################
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.