R/basis_functions.R

#' @name create_basis
#' @rdname create_basis
#' @aliases basis
#'
#' @title Create basis objects
#'
#' @description These functions create different basis objects. These objects
#'   can be used as input to complex functions in order to perform computations
#'   depending on the class of the basis function.
#'
#' @param M The number of the basis functions. In case of Fourier basis, this
#'   number should be even, since we need to have pairs of sines and cosines and
#'   the constant term is added automatically.
#' @param period The period, that is the basis functions are periodic on a
#'   specific interval. Best choice is the Range of the points used for
#'   regression.
#' @param gamma Inverse width of radial basis function.
#' @param mus Optional centers of the RBF.
#' @param eq_spaced_mus Logical, if TRUE, equally spaced centers are created,
#'   otherwise centers are created using \code{\link[stats]{kmeans}} algorithm.
#' @param whole_region Logical, indicating if the centers will be evaluated
#'   equally spaced on the whole region, or between the min and max of the
#'   observation values.
#'
#' @return A basis object of class 'rbf', 'polynomial' or 'fourier'.
#'
#' @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#'
#' @seealso \code{\link{eval_functions}}, \code{\link{bpr_optimize}}
NULL


#' @rdname create_basis
#'
#' @examples
#' (obj <- create_rbf_object(M = 2))
#'
#' #---------------------------------
#'
#' @export
create_rbf_object <- function(M = 2, gamma = NULL, mus = NULL,
                              eq_spaced_mus = TRUE, whole_region = TRUE){
    # Check that M is numberic and integer
    assertthat::assert_that(is.numeric(M))
    assertthat::assert_that(is.logical(eq_spaced_mus))
    assertthat::assert_that(is.logical(whole_region))
    assertthat::assert_that(M %% 1 == 0)
    assertthat::assert_that(M > -1)
    if (! is.null(gamma)){
        assertthat::assert_that(is.numeric(gamma))
        assertthat::assert_that(gamma > 0)
    }else{
        gamma <- M ^ 2 / ( abs(1) + abs(-1) ) ^ 2
    }
    if (! is.null(mus)){
        assertthat::assert_that(is.vector(mus))
        assertthat::assert_that(M == length(mus))
    }else{
        if (eq_spaced_mus){
            mus <- vector(mode = "numeric", M)
            if (whole_region){
                for (i in 1:M){
                    mus[i] <- i * ( (1 - (-1)) / (M + 1) ) + (-1)
                }
            }
        }
    }
    obj <- structure(list(M = M, mus = mus, gamma = gamma,
                          eq_spaced_mus = eq_spaced_mus,
                          whole_region = whole_region),
                     class = "rbf")
    return(obj)
}


#' @rdname create_basis
#'
#' @examples
#' (obj <- create_polynomial_object(M = 2))
#'
#' @export
create_polynomial_object <- function(M = 1){
    # Check that M is numberic and integer
    assertthat::assert_that(is.numeric(M))
    assertthat::assert_that(M %% 1 == 0)
    assertthat::assert_that(M > -1)
    obj <- structure(list(M = M), class = "polynomial")
    return(obj)
}



#' @rdname create_basis
#'
#' @examples
#' (obj <- create_fourier_object(M = 2, period = 1))
#'
#' @export
create_fourier_object <- function(M = 2, period = 2){
    # Check that M is positive numberic and integer
    assertthat::assert_that(is.numeric(M))
    assertthat::assert_that(is.numeric(period))
    assertthat::assert_that(M %% 1 == 0)
    assertthat::assert_that(M > - 1)
    assertthat::assert_that(period >= 0)
    # Check if we have even number of basis functions
    if (M %% 2 == 1 ){
        message("Number of basis must be even; increasing by 1.")
        M = M + 1
    }
    obj <- structure(list(M = M, period = period), class = "fourier")
    return(obj)
}

#------------------------------------------------------------


# (Internal) Apply polynomial basis function.
#
# Apply the polynomial basis function of degree M to the input X.
#
# @param X The input data, either a scalar, vector or matrix.
# @param M Integer, denoting the degree of the polynomial basis that will be
#   applied to the input X. M should not be negative.
#
# @return Input X, after being transformed from the polynomial basis function.
#
# @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#
# @seealso \code{\link{create_polynomial_object}}, \code{\link{rbf_basis}}
#
.polynomial_basis <- function(X, M = 1){
    return(X ^ M)
}


# (Internal) Apply the radial basis function
#
# Apply the RBF function to the input X.
#
# @param X Input data.
# @param mus Centers from where we should compute the distance of the data X.
# @param gamma Inverse width of radial basis function.
#
# @return Input X, after being transformed from the RBF.
#
# @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#
# @seealso \code{\link{create_rbf_object}}, \code{\link{polynomial_basis}}
#
.rbf_basis <- function(X, mus, gamma = 1){
    return(exp( (-1) * gamma * sum( (X - mus) ^ 2) ))
}


# (Internal) Apply the Fourier basis function
#
# Apply the Fourier basis function to the input X.
#
# @param X Input data.
# @param M Integer denoting the degree of the basis function.
# @param period The period of the signal.
#
# @return Input X, after being transformed from the Fourier basis.
#
# @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#
# @seealso \code{\link{create_rbf_object}}, \code{\link{polynomial_basis}}
#
.fourier_basis <- function(X, M = 3, period = 2){
    # Compute base frequency
    omega <- 2 * pi / period
    if (M %% 2 == 1) { return (cos((M-1)/2 * omega * X)) }
    else { return (sin(M/2 * omega * X)) }
}
andreaskapou/BPRMeth-devel documentation built on May 12, 2019, 3:32 a.m.