ClusteredDotPlot | R Documentation |
A function that generates a clustered dot plot with a heatmap of scaled expression.
ClusteredDotPlot(
seuratObj,
features,
groupFields = "ClusterNames_0.2",
assay = "RNA",
ggplotify = TRUE,
scaling = "column",
layer = "data",
forceRescaling = FALSE
)
seuratObj |
The Seurat object that holds the data. |
features |
The features to plot. |
groupFields |
The metadata column that is used for grouping. |
assay |
The assay to plot. |
ggplotify |
A boolean that determines if the ComplexHeatmap object should be converted to a ggplot object. |
scaling |
The scaling method for the heatmap. Options are "row", "column", or none. |
layer |
The layer of the Seurat object that holds the relevant expression data. |
forceRescaling |
A boolean that determines if the Seurat object should be rescaled to include entries in the features vector if any are missing from the scale.data layer. This might be costly to perform locally. |
## Not run:
#set the seurat Idents for FindAllMarkers
Seurat::Idents(seuratObj) <- "ClusterNames_0.2"
markers <- Seurat::FindAllMarkers(seuratObj)
#filter markers to display the largest cluster identity markers according to average log fold change and differences in pct expression.
strong_markers <- markers[abs(markers$avg_log2FC) > 3 & abs(markers$pct.1 - markers$pct.2) > 0.25, "gene"]
dotPlot <- ClusteredDotPlot(seuratObj, features = strong_markers, groupFields = "ClusterNames_0.2", scaling = 'column', ggplotify = TRUE)
print(dotPlot)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.