FindClustersAndDimRedux | R Documentation |
Find Clusters And Perform DimRedux
FindClustersAndDimRedux(
seuratObj,
dimsToUse = NULL,
minDimsToUse = NULL,
umap.method = "uwot",
umap.metric = NULL,
umap.n.neighbors = NULL,
umap.min.dist = NULL,
umap.spread = NULL,
seed.use = GetSeed(),
umap.n.epochs = NULL,
max.tsne.iter = 10000,
tsne.perplexity = 30,
umap.densmap = FALSE,
clusterResolutions = c(0.2, 0.4, 0.6, 0.8, 1.2),
runTSNE = FALSE,
useLeiden = FALSE
)
seuratObj |
A Seurat object. |
dimsToUse |
The number of dims to use. If null, this will be inferred using FindSeuratElbow() |
minDimsToUse |
The minimum numbers of dims to use. If dimsToUse is provided, this will override. |
umap.method |
The UMAP method, either uwot or umap-learn, passed directly to Seurat::RunUMAP |
umap.metric |
Passed directly to Seurat::RunUMAP |
umap.n.neighbors |
Passed directly to Seurat::RunUMAP |
umap.min.dist |
Passed directly to Seurat::RunUMAP |
umap.spread |
Passed directly to Seurat::RunUMAP |
seed.use |
Passed directly to Seurat::RunUMAP, FindClusters, and RunTSNE |
umap.n.epochs |
Passed directly to Seurat::RunUMAP |
max.tsne.iter |
The value of max_iter to provide to RunTSNE. Increasing can help large datasets. |
tsne.perplexity |
tSNE perplexity. Passed directly to Seurat::RunTSNE(), but CellMembrane:::.InferPerplexityFromSeuratObj() corrects it if need be based dataset dims. |
umap.densmap |
Passed directly to Seurat::RunUMAP |
clusterResolutions |
A vector of clustering resolutions, default is (0.2, 0.4, 0.6, 0.8, 1.2). |
runTSNE |
If true, tSNE will be run. The default is UMAP alone. |
useLeiden |
If true, Leiden clustering (FindClusters algorithm = 4) will be used. Otherwise it will default to algorithm = 1 (Louvain). |
A modified Seurat object.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.