FindClustersAndDimRedux: Find Clusters And Perform DimRedux

View source: R/Seurat_III.R

FindClustersAndDimReduxR Documentation

Find Clusters And Perform DimRedux

Description

Find Clusters And Perform DimRedux

Usage

FindClustersAndDimRedux(
  seuratObj,
  dimsToUse = NULL,
  minDimsToUse = NULL,
  umap.method = "uwot",
  umap.metric = NULL,
  umap.n.neighbors = NULL,
  umap.min.dist = NULL,
  umap.spread = NULL,
  seed.use = GetSeed(),
  umap.n.epochs = NULL,
  max.tsne.iter = 10000,
  tsne.perplexity = 30,
  umap.densmap = FALSE,
  clusterResolutions = c(0.2, 0.4, 0.6, 0.8, 1.2),
  runTSNE = FALSE,
  useLeiden = FALSE
)

Arguments

seuratObj

A Seurat object.

dimsToUse

The number of dims to use. If null, this will be inferred using FindSeuratElbow()

minDimsToUse

The minimum numbers of dims to use. If dimsToUse is provided, this will override.

umap.method

The UMAP method, either uwot or umap-learn, passed directly to Seurat::RunUMAP

umap.metric

Passed directly to Seurat::RunUMAP

umap.n.neighbors

Passed directly to Seurat::RunUMAP

umap.min.dist

Passed directly to Seurat::RunUMAP

umap.spread

Passed directly to Seurat::RunUMAP

seed.use

Passed directly to Seurat::RunUMAP, FindClusters, and RunTSNE

umap.n.epochs

Passed directly to Seurat::RunUMAP

max.tsne.iter

The value of max_iter to provide to RunTSNE. Increasing can help large datasets.

tsne.perplexity

tSNE perplexity. Passed directly to Seurat::RunTSNE(), but CellMembrane:::.InferPerplexityFromSeuratObj() corrects it if need be based dataset dims.

umap.densmap

Passed directly to Seurat::RunUMAP

clusterResolutions

A vector of clustering resolutions, default is (0.2, 0.4, 0.6, 0.8, 1.2).

runTSNE

If true, tSNE will be run. The default is UMAP alone.

useLeiden

If true, Leiden clustering (FindClusters algorithm = 4) will be used. Otherwise it will default to algorithm = 1 (Louvain).

Value

A modified Seurat object.


bimberlabinternal/CellMembrane documentation built on Jan. 16, 2025, 5:47 p.m.