Description Usage Arguments Value See Also Examples
Embeds cells in two dimensions using tSNE based on a 'celda_C' model. PCA on the normalized counts is used to reduce the number of features before applying tSNE.
1 2 3 4  | ## S3 method for class 'celda_C'
celdaTsne(counts, celda.mod, max.cells = 25000,
  min.cluster.size = 100, initial.dims = 20, perplexity = 20,
  max.iter = 2500, seed = 12345, ...)
 | 
counts | 
 Integer matrix. Rows represent features and columns represent cells. This matrix should be the same as the one used to generate 'celda.mod'.  | 
celda.mod | 
 Celda object of class 'celda_C'.  | 
max.cells | 
 Integer. Maximum number of cells to plot. Cells will be randomly subsampled if ncol(counts) > max.cells. Larger numbers of cells requires more memory. Default 25000.  | 
min.cluster.size | 
 Integer. Do not subsample cell clusters below this threshold. Default 100.  | 
initial.dims | 
 Integer. PCA will be used to reduce the dimentionality of the dataset. The top 'initial.dims' principal components will be used for tSNE. Default 20.  | 
perplexity | 
 Numeric. Perplexity parameter for tSNE. Default 20.  | 
max.iter | 
 Integer. Maximum number of iterations in tSNE generation. Default 2500.  | 
seed | 
 Integer. Passed to 'set.seed()'. Default 12345.  | 
... | 
 Additional parameters.  | 
A two column matrix of t-SNE coordinates
'celda_C()' for clustering cells and 'celdaHeatmap()' for displaying expression
1  | tsne.res = celdaTsne(celda.C.sim$counts, celda.C.mod)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.