Description Usage Arguments Value See Also Examples
Embeds cells in two dimensions using tSNE based on a 'celda_C' model. PCA on the normalized counts is used to reduce the number of features before applying tSNE.
1 2 3 4 | ## S3 method for class 'celda_C'
celdaTsne(counts, celda.mod, max.cells = 25000,
min.cluster.size = 100, initial.dims = 20, perplexity = 20,
max.iter = 2500, seed = 12345, ...)
|
counts |
Integer matrix. Rows represent features and columns represent cells. This matrix should be the same as the one used to generate 'celda.mod'. |
celda.mod |
Celda object of class 'celda_C'. |
max.cells |
Integer. Maximum number of cells to plot. Cells will be randomly subsampled if ncol(counts) > max.cells. Larger numbers of cells requires more memory. Default 25000. |
min.cluster.size |
Integer. Do not subsample cell clusters below this threshold. Default 100. |
initial.dims |
Integer. PCA will be used to reduce the dimentionality of the dataset. The top 'initial.dims' principal components will be used for tSNE. Default 20. |
perplexity |
Numeric. Perplexity parameter for tSNE. Default 20. |
max.iter |
Integer. Maximum number of iterations in tSNE generation. Default 2500. |
seed |
Integer. Passed to 'set.seed()'. Default 12345. |
... |
Additional parameters. |
A two column matrix of t-SNE coordinates
'celda_C()' for clustering cells and 'celdaHeatmap()' for displaying expression
1 | tsne.res = celdaTsne(celda.C.sim$counts, celda.C.mod)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.