celdaTsne.celda_G: tSNE for celda_G

Description Usage Arguments Value See Also Examples

View source: R/celda_G.R

Description

Embeds cells in two dimensions using tSNE based on a 'celda_G' model. tSNE is run on module probabilities to reduce the number of features instead of using PCA. Module probabilities square-root trasformed before applying tSNE.

Usage

1
2
3
## S3 method for class 'celda_G'
celdaTsne(counts, celda.mod, max.cells = 10000,
  modules = NULL, perplexity = 20, max.iter = 2500, seed = 12345, ...)

Arguments

counts

Integer matrix. Rows represent features and columns represent cells. This matrix should be the same as the one used to generate 'celda.mod'.

celda.mod

Celda object of class 'celda_G'.

max.cells

Integer. Maximum number of cells to plot. Cells will be randomly subsampled if ncol(conts) > max.cells. Larger numbers of cells requires more memory. Default 10000.

modules

Integer vector. Determines which feature modules to use for tSNE. If NULL, all modules will be used. Default NULL.

perplexity

Numeric. Perplexity parameter for tSNE. Default 20.

max.iter

Integer. Maximum number of iterations in tSNE generation. Default 2500.

seed

Integer. Passed to 'set.seed()'. Default 12345.

...

Additional parameters.

Value

A two column matrix of t-SNE coordinates

See Also

'celda_G()' for clustering features and 'celdaHeatmap()' for displaying expression

Examples

1
tsne.res = celdaTsne(celda.G.sim$counts, celda.G.mod)

compbiomed/celda documentation built on May 25, 2019, 3:58 a.m.