Description Usage Arguments Value See Also Examples
Embeds cells in two dimensions using tSNE based on a 'celda_CG' model. tSNE is run on module probabilities to reduce the number of features instead of using PCA. Module probabilities square-root trasformed before applying tSNE.
1 2 3 4 | ## S3 method for class 'celda_CG'
celdaTsne(counts, celda.mod, max.cells = 25000,
min.cluster.size = 100, modules = NULL, perplexity = 20,
max.iter = 2500, seed = 12345, ...)
|
counts |
Integer matrix. Rows represent features and columns represent cells. This matrix should be the same as the one used to generate 'celda.mod'. |
celda.mod |
Celda object of class 'celda_CG'. |
max.cells |
Integer. Maximum number of cells to plot. Cells will be randomly subsampled if ncol(counts) > max.cells. Larger numbers of cells requires more memory. Default 25000. |
min.cluster.size |
Integer. Do not subsample cell clusters below this threshold. Default 100. |
modules |
Integer vector. Determines which features modules to use for tSNE. If NULL, all modules will be used. Default NULL. |
perplexity |
Numeric. Perplexity parameter for tSNE. Default 20. |
max.iter |
Integer. Maximum number of iterations in tSNE generation. Default 2500. |
seed |
Integer. Passed to 'set.seed()'. Default 12345. |
... |
Additional parameters. |
A two column matrix of t-SNE coordinates
'celda_CG()' for clustering features and cells and 'celdaHeatmap()' for displaying expression
1 | tsne.res = celdaTsne(celda.CG.sim$counts, celda.CG.mod)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.