runGSVA: Run GSVA analysis on a SingleCellExperiment object

View source: R/runGSVA.R

runGSVAR Documentation

Run GSVA analysis on a SingleCellExperiment object

Description

Run GSVA analysis on a SingleCellExperiment object

Usage

runGSVA(
  inSCE,
  useAssay = "logcounts",
  resultNamePrefix = NULL,
  geneSetCollectionName,
  ...
)

Arguments

inSCE

Input SingleCellExperiment object.

useAssay

Indicate which assay to use. The default is "logcounts"

resultNamePrefix

Character. Prefix to the name the GSVA results which will be stored in the reducedDim slot of inSCE. The names of the output matrix will be resultNamePrefix_Scores. If this parameter is set to NULL, then "GSVA_geneSetCollectionName_" will be used. Default NULL.

geneSetCollectionName

Character. The name of the gene set collection to use.

...

Parameters to pass to gsva()

Value

A SingleCellExperiment object with pathway activity scores from GSVA stored in reducedDim as GSVA_geneSetCollectionName_Scores.

Examples

data(scExample, package = "singleCellTK")
sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
sce <- scaterlogNormCounts(sce, assayName = "logcounts")
gs1 <- rownames(sce)[seq(10)]
gs2 <- rownames(sce)[seq(11,20)]
gs <- list("geneset1" = gs1, "geneset2" = gs2)

sce <- importGeneSetsFromList(inSCE = sce,geneSetList = gs,
                                           by = "rownames")
sce <- runGSVA(inSCE = sce, 
               geneSetCollectionName = "GeneSetCollection", 
               useAssay = "logcounts")

compbiomed/singleCellTK documentation built on Oct. 27, 2024, 3:26 a.m.