| scaterPCA | R Documentation | 
A wrapper to runPCA function to compute principal component analysis (PCA) from a given SingleCellExperiment object.
scaterPCA(
  inSCE,
  useAssay = "logcounts",
  useFeatureSubset = "hvg2000",
  scale = TRUE,
  reducedDimName = "PCA",
  nComponents = 50,
  ntop = 2000,
  useAltExp = NULL,
  seed = 12345,
  BPPARAM = BiocParallel::SerialParam()
)
| inSCE | Input SingleCellExperiment object. | 
| useAssay | Assay to use for PCA computation. If  | 
| useFeatureSubset | Subset of feature to use for dimension reduction. A
character string indicating a  | 
| scale | Logical scalar, whether to standardize the expression values.
Default  | 
| reducedDimName | Name to use for the reduced output assay. Default
 | 
| nComponents | Number of principal components to obtain from the PCA
computation. Default  | 
| ntop | Automatically detect this number of variable features to use for
dimension reduction. Ignored when using  | 
| useAltExp | The subset to use for PCA computation, usually for the
selected.variable features. Default  | 
| seed | Integer, random seed for reproducibility of PCA results.
Default  | 
| BPPARAM | A BiocParallelParam object specifying whether the PCA should be parallelized. | 
A SingleCellExperiment object with PCA computation
updated in reducedDim(inSCE, reducedDimName).
data(scExample, package = "singleCellTK")
sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
sce <- scaterlogNormCounts(sce, "logcounts")
# Example of ranking variable genes, selecting the top variable features,
# and running PCA. Make sure to increase the number of highly variable
# features (hvgNumber) and the number of principal components (nComponents)
# for real datasets
sce <- runModelGeneVar(sce, useAssay = "logcounts")
sce <- setTopHVG(sce, method = "modelGeneVar", hvgNumber = 100,
                 featureSubsetName = "hvf")
sce <- scaterPCA(sce, useAssay = "logcounts", scale = TRUE,
                 useFeatureSubset = "hvf", nComponents = 5)
                 
# Alternatively, let the scater PCA function select the top variable genes
sce <- scaterPCA(sce, useAssay = "logcounts", scale = TRUE,
                 useFeatureSubset = NULL, ntop = 100, nComponents = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.