decontXHelpModal <- function() {
modalDialog(
tags$style(HTML("
div {
word-wrap: break-word;
}
")),
tags$div(
h3("DecontX Parameters"),
fluidRow(
column(4, tags$b("Parameter Name")),
column(8, tags$b("Description"))
),
tags$hr(),
fluidRow(
column(4, "maxIter"),
column(8, "Integer. Maximum iterations of the EM algorithm. Default 500.")
),
tags$hr(),
fluidRow(
column(4, "nativePrior"),
column(8, "Integer. The first element of a vector containing the concentration parameters
for the Dirichlet prior for the contamination in each cell.")
),
tags$hr(),
fluidRow(
column(4, "contaminationPrior"),
column(8, "Integer. The second element of a vector containing the concentration parameters
for the Dirichlet prior for the contamination in each cell.")
),
tags$hr(),
fluidRow(
column(4, "convergence"),
column(8, "Numeric. The EM algorithm will be stopped if the maximum difference in the contamination
estimates between the previous and current iterations is less than this. Default 0.001.")
),
tags$hr(),
fluidRow(
column(4, "iterLogLik"),
column(8, "Integer. Calculate log likelihood every iterLogLik iteration. Default 10.")
),
tags$hr(),
fluidRow(
column(4, "varGenes"),
column(8, "Integer. The number of variable genes to use in dimensionality reduction before clustering.
Variability is calcualted using modelGeneVar function from the 'scran' package. Used only when z is not provided.
Default 5000.")
),
tags$hr(),
fluidRow(
column(4, "dbscanEps"),
column(8, "Numeric. The clustering resolution parameter used in 'dbscan' to estimate broad cell clusters.
Used only when z is not provided. Default 1.")
),
tags$hr(),
fluidRow(
column(4, "estimateDelta"),
column(8, "Check off to update delta at each iteration.")
),
tags$hr(),
fluidRow(
column(4, "verbose"),
column(8, "Check off to print log messages. Default TRUE.")
),
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.