#' conditional analysis for single variant association test;
#'
#' @param score.stat.file the file names of score statistic files;
#' @param imp.qual.file the file names of imputation quality;
#' @param vcf.ref.file the file names of the reference panel file;
#' @param candidateVar.df a data frame with pos being the position (pos) of the variants, and groupName being the groups that should be analyzed together;
#' @param knownVar known variant;
#' @param alternative The alternative hypothesis. Default is two.sided;
#' @param col.impqual The column number for the imputation quality score;
#' @param impQual.lb The lower bound for the imputation quality. Variants with imputaiton quality less than impQual.lb will be labelled as missing;
#' @param impQualWeight Using imputation quality as weight
#' @param rmMultiAllelicSite Default is TRUE. Multi-allelic sites will be removed from the analyses if set TRUE, and a variable posMulti will be output; The variant site with multiple alleles can be analyzed using rareGWAMA.single.multiAllele function;
#' @return A list of analysis results;
#' @export
rareGWAMA.cond.gene <- function(score.stat.file,imp.qual.file=NULL,vcf.ref.file,candidateVar.df,knownVar,alternative="two.sided",...) {
uniq.allele <- function(x) {x.tab <- table(x);return(paste(names(x.tab),sep=',',collapse=','))}
extraPar <- list(...);
sizePerBatch <- extraPar$sizePerBatch;
if(is.null(sizePerBatch)) sizePerBatch <- 100;
refGeno <- extraPar$refGeno;
col.impqual <- extraPar$col.impqual;
impQual.lb <- extraPar$impQual.lb;
maf.cutoff <- extraPar$maf.cutoff;
impQualWeight <- FALSE;
rmMultiAllelicSite <- extraPar$rmMultiAllelicSite;
if(is.null(col.impqual)) col.impqual <- 5;
if(is.null(impQual.lb)) impQual.lb <- 0.7;
if(is.null(rmMultiAllelicSite)) rmMultiAllelicSite <- TRUE;
if(is.null(refGeno)) refGeno <- "DS";
if(is.null(maf.cutoff)) maf.cutoff <- 0.05;
missing <- extraPar$missing;
if(is.null(missing)) missing <- 'pseudoscore';
rvtest <- extraPar$rvtest;
if(is.null(rvtest)) rvtest <- "burden";
group.vec <- unique(candidateVar.df$groupName);
statistic <- 0;p.value <- 0;no.site <- 0;pos.gene <- 0;variant.direction.effect <- 0;maf.cutoff.out <- 0;
for(ii in 1:length(group.vec)) {
candidateVar.ii <- candidateVar.df$pos[candidateVar.df$groupName==group.vec[ii]]
candidateVar.ii <- candidateVar.ii[!candidateVar.ii%in%knownVar];
tabix.range <- get.tabix.range(c(candidateVar.ii,knownVar));
a <- Sys.time();
capture.output(raw.data.all <- rvmeta.readDataByRange( score.stat.file, NULL, tabix.range,multiAllelic = TRUE));
vcfIndv <- refGeno;
annoType <- "";
vcfColumn <- c("CHROM","POS","REF","ALT");
vcfInfo <- NULL;
geno.list <- readVCFToListByRange(vcf.ref.file, tabix.range, "", vcfColumn, vcfInfo, vcfIndv)
raw.imp.qual <- NULL;
if(!is.null(imp.qual.file))
raw.imp.qual <- lapply(imp.qual.file,tabix.read.table,tabixRange=tabix.range);
time.readData <- Sys.time()-a;
b <- Sys.time();
raw.data.all <- raw.data.all[[1]];
cat('Analyzing',group.vec[ii],'\n',sep=' ');
cat('Read in',length(raw.data.all$ref[[1]]),'variants\n',sep=' ');
dat <- GWAMA.formatData(raw.data.all=raw.data.all,
raw.imp.qual=raw.imp.qual,
impQualWeight=impQualWeight,
impQual.lb=impQual.lb,
col.impqual=col.impqual,
maf.cutoff=maf.cutoff,
knownVar=knownVar);
if(rmMultiAllelicSite==TRUE) {
tmp <- GWAMA.rmMulti(dat);
dat <- tmp$dat;posMulti <- tmp$posMulti;
}
pos <- gsub("_.*","",dat$pos);
if(refGeno=="DS") {
gt <- geno.list$DS;
gt <- matrix(as.numeric(gt),nrow=nrow(gt),ncol=ncol(gt));
}
if(refGeno=="GT") {
gt.tmp <- geno.list$GT
gt <- matrix(NA,nrow=nrow(gt.tmp),ncol=ncol(gt.tmp));
gt[which(gt.tmp=="0/0",arr.ind=T)] <- 0;
gt[which(gt.tmp=="1/0",arr.ind=T)] <- 1;
gt[which(gt.tmp=="0/1",arr.ind=T)] <- 1;
gt[which(gt.tmp=="1/1",arr.ind=T)] <- 2
gt[which(gt.tmp=="0|0",arr.ind=T)] <- 0;
gt[which(gt.tmp=="1|0",arr.ind=T)] <- 1;
gt[which(gt.tmp=="0|1",arr.ind=T)] <- 1;
gt[which(gt.tmp=="1|1",arr.ind=T)] <- 2
}
r2.tmp <- cor(gt,use='pairwise.complete');
r2.tmp <- rm.na(r2.tmp);
pos.vcf <- paste(geno.list$CHROM,geno.list$POS,sep=":");
r2 <- matrix(0,nrow=length(pos),ncol=length(pos));
r2 <- as.matrix(r2.tmp[match(pos,pos.vcf),match(pos,pos.vcf)]);
diag(r2) <- 1;
ix.candidate <- match(intersect(pos,candidateVar.ii),pos);
ix.known <- match(intersect(pos,knownVar),pos);
res.cond <- list();
if(length(ix.candidate)>0 & length(ix.known)>0) {
if(missing=='pseudoscore') {
res.cond <- getCondUV(dat=dat,lambda=.1,ix.candidate=ix.candidate,ix.known=ix.known,r2=r2);
}
if(missing=='dswm') {
ustat.mat.known <- matrix(is.na(dat$ustat.mat[ix.known,]),nrow=length(ix.known));
ix.missing <- which(colSums(ustat.mat.known)>0);
if(length(ix.missing)<ncol(dat$ustat.mat)) {
if(length(ix.missing)>0) {
dat$ustat.mat <- as.matrix(dat$ustat.mat[,-ix.missing]);
dat$vstat.mat <- as.matrix(dat$vstat.mat[,-ix.missing]);
dat$nSample.mat <- as.matrix(dat$nSample.mat[,-ix.missing]);
dat$af.mat <- as.matrix(dat$af.mat[,-ix.missing]);
}
ustat.meta <- rowSums(dat$ustat.mat,na.rm=TRUE);
vstat.sq.meta <- rowSums((dat$vstat.mat)^2,na.rm=TRUE);
vstat.meta <- sqrt(vstat.sq.meta);
nSample.meta <- rowSums(dat$nSample.mat,na.rm=TRUE);
N <- max(nSample.meta,na.rm=TRUE);
X.T.times.X <- diag(vstat.meta)%*%r2%*%diag(vstat.meta);
res.cond <- get.conditional.score.stat(ustat.meta,X.T.times.X,N,ix.candidate,ix.known);
}
}
if(missing=='msso') {
warning("replace missing data with 0 may result in biased conditional analysis results");
dat$ustat.mat <- rm.na(dat$ustat.mat);
dat$vstat.mat <- rm.na(dat$vstat.mat);
dat$nSample.mat <- rm.na(dat$nSample.mat);
ustat.meta <- rowSums(dat$ustat.mat,na.rm=TRUE);
vstat.sq.meta <- rowSums((dat$vstat.mat)^2,na.rm=TRUE);
vstat.meta <- sqrt(vstat.sq.meta);
nSample.meta <- rowSums(dat$nSample.mat,na.rm=TRUE);
N <- max(nSample.meta,na.rm=TRUE);
X.T.times.X <- diag(vstat.meta)%*%r2%*%diag(vstat.meta);
res.cond <- get.conditional.score.stat(ustat.meta,X.T.times.X,N,ix.candidate,ix.known);
}
res.cond$ustat.meta <- res.cond$conditional.ustat;
variant.direction.effect.tmp <- rep("X",length(res.cond$conditional.ustat));
variant.direction.effect.tmp[which(res.cond$conditional.ustat>0)] <- "+";
variant.direction.effect.tmp[which(res.cond$conditional.ustat<0)] <- "-";
variant.direction.effect.tmp[which(res.cond$conditional.ustat==0)] <- "=";
variant.direction.effect[ii] <- paste(variant.direction.effect.tmp,sep='',collapse='');
maf.cutoff.out[ii] <- maf.cutoff
no.site[ii] <- length(dat$pos);
res.cond$V.meta <- res.cond$conditional.V;
res.cond$maf.meta <- dat$maf.meta[ix.candidate];
res.cond$nSample.meta <- rowSums(dat$nSample.mat,na.rm=TRUE)[ix.candidate];
if(rvtest=='skat') res.assoc <- rareGWAMA.skat(dat=res.cond);
if(rvtest=='burden') res.assoc <- rareGWAMA.burden(dat=res.cond);
if(rvtest=='vt') {
res.assoc <- rareGWAMA.vt(dat=res.cond);
maf.cutoff.out[ii] <- res.assoc$maf.cutoff.vt;
no.site[ii] <- res.assoc$no.site.VT;
}
statistic[ii] <- res.assoc$statistic;
p.value[ii] <- res.assoc$p.value;
pos.gene[ii] <- paste(dat$pos,sep=",",collapse=",");
}
}
res.formatted <- cbind(group.vec,
statistic,
p.value,
no.site,
maf.cutoff.out,
variant.direction.effect,
pos.gene);
colnames(res.formatted) <- c("GENE","STATISTIC","PVALUE","N_SITE", "MAF_CUTOFF","SINGLE_VAR_EFFECT","VARIANTS");
return(list(res.formatted=res.formatted));
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.