Description Usage Arguments Value See Also Examples
Uses a clustering algorithm to cluster the 3 categories: Positive, Negative, NTC on the file provided. Requires known control values as specified in the Control.File.
1 2 3 |
File |
Name of the file containing the raw data from a Quant Studio qPCR run. The column Clone-plant_ID must be added. |
Control.File |
Name of the file containing the controls. Must contain 2 columns, Name and Presence, with Name matching the values in Clone-Plant_ID for control samples. (Default = Controls.csv) |
Directory |
The directory containing the necessary files. Default to NULL which will use current directory. |
sheet |
The name in File where Clone-Plant_ID and RQ values are stored. Default = "Results". |
Console |
Should plots be printed to the console? Default is False which prints the plots to Output.Dir. |
Output.File |
The name of the output file containing the final dosage calls. Defaults to Dosage.csv. |
A dataset containing the dosage calls of each of the methods and a final determination of the dosage and likelihood.
CallDosage
for calling the dosage of provided data
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | # Obtain the appropriate Control and Raw Data files. You can find these in the
# data-raw/ folder of the Quadrophenia package files.They should match the data below.
# A 41 line header
# Followed by the output of QuantStudio's Results sheet
# Note that Clone-plant_ID must be added manually to this file
require(Quadrophenia)
RawData.Assay2[1:41,1] # Header
RawData.Assay2[42,] # Columns of data
# The controls file has two columns: Clone-plant_ID and Presence. Clone-plant_ID must
# match the Clone-plant_ID columns for the associated controls in the raw data file.
head(ControlsAssay2)
# Then run CallPA() with these files as inputs
output = CallPA(File='RawData.Assay2.xls',Control.File='ControlsAssay2.csv')
# The output directory Output/ should contain 1 .csv file and a Plots/ directory.
# The Plots/ directory contains one plot showing the clustering of Positive, Negative,
# and Undetermined calls for the expression of the target & reference assays.
head(output)
## Other ways to run CallPA()
# You could also specifiy an output file or a directory to look for the raw data files
dir.create('Files/')
file.copy(c('RawData.Assay2.xls','ControlsAssay2.csv'),'Files/')
output = CallPA(File='RawData.Assay2.xls',
Control.File='ControlsAssay2.csv',
Directory='Files/',Output.Dir='NewOutput')
# Or specify the files in Files/ wihout specifying the directory. You can
# also change the name of the output file to something more informative.
output = CallPA(File='Files/RawData.Assay2.xls',
Control.File='Files/ControlsAssay2.csv',
Output.Dir='ThirdOutput',
Output.File='ThirdOutputPA.csv')
# Duplicates will automatically be renamed to avoid conflicts
output = CallPA(File='Files/RawData.Assay2.xls',
Control.File='Files/ControlsAssay2.csv',
Output.Dir='ThirdOutput',
Output.File='ThirdOutputPA.csv')
# Clean up the test files
unlink(c('Files','Output','ThirdOutput'),recursive=T)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.