shinyCell | R Documentation |
Filtrar cdata usando gráficos y dibujando regiones
shinyCell( cdata, pdata, paths, filters = list(), filters.init_selected = T, plotType = "Dots", seed = 1, initial_facet = "", initial_vars = NULL, facet_grid_option = TRUE, facets_scale_free = "fixed", n_max = 100, boxSize = 80, filter_progress_file = NULL, launch.browser = F, ... )
cdata |
A Rcell "cdata" data.frame (not the object). |
pdata |
A "pdata" data.frame with position metadata. |
paths |
Paths a la imagen de cada posición. |
filters |
Vector de strings con los filtros. c() by default. |
plotType |
"Hex", "Density", and "Dots" are available. |
seed |
Seed value for sampling of cell images. |
initial_facet |
Initial facet formula as a string. |
initial_vars |
Initial cdata variables as a string vector (default NULL, for 'a.tot' and 'fft.stat'). |
facet_grid_option |
Use facet_grid (TRUE, default) or facet_wrap. |
facets_scale_free |
Use facets with fixed scales (NULL, default) or free scales ("free"). |
boxSize |
Size in pixels for individual cells' images. |
filter_progress_file |
Save filtering progress to an RDS file. FALSE (default) disables this feature. Set to NULL to let tempfile() choose a path for the RDS, or set to a valid path of your choice. |
launch.browser |
Set to |
... |
Further arguments passed to magickCell() |
Lots of stuff.
path <- "/mac/apesta/trololololol/" cell.data <- rcell2::cell.load.alt(path = path) image.paths <- cell.data$d.paths # image.paths <- rcell2::magickPaths(cell.data) pdata <- read_tsv(paste0(path, "pdata.csv")) cdata <- left_join(cell.data$d, pdata) rcell2::shinyCell(cdata = cdata, pdata = pdata, paths = cell.data$d.paths, n_max = 5^2, boxSize = 100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.