#' Plot PLS
#'
#' Plots PLS from scores file (output of PLSR_from_file)
#'
#' @param file File containing scores matrix
#' @param info.name Vector of sample names
#' @param info.type Vector of sample types in the same order
#' @param title Title of the plot
#' @param labels default=T
#' @param PCx,PCy PCs to display
#' @param ellipse Construct confidence region based on groups in info.type, default = T
#' @param conf default = 0.95
#' @param fliph default = F
#' @param flipv default = F
#'
#' @importFrom ggplot2 ggplot aes aes_string element_rect element_text geom_point geom_text labs margin theme theme_bw
#'
#' @export
#'
plot_pls <- function(file, info.name, info.type, title = "", labels = TRUE, PCx = "comp1", PCy = "comp2", ellipse = F, conf = 0.95,
fliph = F, flipv = F) {
# Input: PLSR scores file to be plotted
## process PLS output and adds groupings
table <- read.table(file, header = TRUE)
table$type <- info.type[match(table$Score, info.name)]
if (fliph == T) {
table[, PCx] <- table[, PCx] * -1
}
if (flipv == T) {
table[, PCy] <- table[, PCy] * -1
}
if (!grepl("VARIMAX", file)){
exp_var <- read.delim(paste0(gsub("scores.txt", "", file), "pve.txt"), row.names = 1)
exp_var$pve <- unlist(round(exp_var[, 1] * 100, digits = 2))
rownames(exp_var) <- paste0("comp", seq(1, nrow(exp_var)))
xlab <- paste0(PCx, " (", exp_var$pve[match(PCx, rownames(exp_var))], "%)")
ylab <- paste0(PCy, " (", exp_var$pve[match(PCy, rownames(exp_var))], "%)")
} else {
xlab <- PCx
ylab <- PCy
}
pcx.y <- ggplot(table, aes_string(x = PCx, y = PCy)) +
geom_point(size = I(3), aes(color = factor(type))) +
theme(
legend.position = "right",
plot.title = element_text(size = 30),
legend.text = element_text(size = 22),
legend.title = element_text(size = 20),
axis.title = element_text(size = 30),
legend.background = element_rect(),
axis.text.x = element_text(margin = margin(b = -2)),
axis.text.y = element_text(margin = margin(l = -14))
) +
guides(color = guide_legend(title = "Type")) +
labs(
title = title,
x = xlab,
y = ylab
) +
theme_bw(base_size = 18) +
if (labels == TRUE) {
ggrepel::geom_text_repel(data = table, mapping = aes(label = Score), size = 3)
}
if (ellipse == TRUE) {
if(grepl("VARIMAX", file)){
PCx <- sub("[a-zA-Z]*", "V", PCx)
PCy <- sub("[a-zA-Z]*", "V", PCy)
}
plot(table[, c(PCx, PCy)], main = title)
ord <- vegan::ordiellipse(table[, c(PCx, PCy)], table$type, kind = "sd", conf = conf)
cov_ellipse <- function(cov, center = c(0, 0), scale = 1, npoints = 100) {
theta <- (0:npoints) * 2 * pi / npoints
Circle <- cbind(cos(theta), sin(theta))
t(center + scale * t(Circle %*% chol(cov)))
}
df_ell <- data.frame(matrix(ncol = 0, nrow = 0))
for (g in (table$type)) {
df_ell <- rbind(df_ell, cbind(as.data.frame(with(
table[table$type == g, ],
cov_ellipse(ord[[g]]$cov, ord[[g]]$center, ord[[g]]$scale)
)),
type = g
))
}
pcx.y2 <- pcx.y +
geom_path(data = df_ell, aes(x = df_ell[, PCx], y = df_ell[, PCy], colour = type), size = 1, linetype = 1)
pcx.y2
} else {
pcx.y
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.