#' SSdeltaMVLN_old()
#'
#' function to generatbe kobe pdfs from a Multivariate Log-Normal Distribution
#' including plotting option
#'
#' @param ss3rep from r4ss::SSgetoutput()$replist1
#' @param status covarying stock status quantaties to extract from Hessian
#' @param quants additional stock quantaties to extract from Hessian
#' @param Fref Choice of reference point for stock SSB/XFref=c("MSY","Ftrg"),only if F_report_basis: 0 or 3
#' @param years single year or vector of years for mvln
#' @param mc number of monte-carlo simulations
#' @param weight weighting option for model ensembles weight*mc
#' @param run qualifier for model run
#' @param plot option to show plot
#' @param ymax ylim maximum
#' @param xmax xlim maximum
#' @param legendcex=1 Allows to adjust legend cex
#' @param verbose Report progress to R GUI?
#' @return output list of kobe objects and mle's
#' @author Henning Winker (JRC-EC)
#' @export
SSdeltaMVLN_old = function(ss3rep,status=c('Bratio','F'),quants =c("SSB","Recr"),Fref = c("MSY","Ftrg"),years=NULL,mc=5000,weight=1,run="MVLN",plot=TRUE,
addtrj=TRUE,ymax=NULL,xmax=NULL,legendcex=1,verbose=TRUE){
mc = round(weight*mc,0)
hat = ss3rep$derived_quants
cv = ss3rep$CoVar
if(is.null(cv)) stop("CoVar from Hessian required")
# Get years
allyrs = unique(as.numeric(gsub(paste0(status[1],"_"),"",hat$Label[grep(paste0(status[1],"_"), hat$Label)])))[-1]
allyrs = allyrs[!is.na(allyrs)]
if(is.null(years) & addtrj==FALSE) yrs = ss3rep$endyr
if(is.null(years) & addtrj==TRUE) yrs = allyrs[allyrs<=ss3rep$endyr]
if(is.null(years)==FALSE) yrs = years[years%in%allyrs==TRUE]
cv <- cv[cv$label.i %in% paste0(status,"_",yrs),]
cv$label.j[cv$label.j=="_"] <- cv$label.i[cv$label.j=="_"]
if(is.null(hat$Label)){ylabel = hat$LABEL} else {ylabel=hat$Label}
kb=mle = NULL
for(yi in 1:length(yrs)){
yr = yrs[yi]
x <- cv[cv$label.j %in% paste0(status[2],"_",c(yr-1,yr,yr+1)) & cv$label.i %in% paste0(status[1],"_",c(yr-1,yr,yr+1)),]
y = hat[ylabel %in% paste0(status,"_",yr),] # old version Label not LABEL
y$Value[1] = ifelse(y$Value[1]==0,0.001,y$Value[1])
varF = log(1+(y$StdDev[1]/y$Value[1])^2) # variance log(F/Fmsy)
varB = log(1+(y$StdDev[2]/y$Value[2])^2) # variance log(SSB/SSBmsy)
cov = log(1+mean(x$corr)*sqrt(varF*varB)) # covxy
# MVN means of SSB/SBBmsy and F/Fsmy
mvnmu = log(c(y$Value[2],y$Value[1])) # Assume order F_ then Bratio_
# Create MVN-cov-matrix
mvncov = matrix(c(varB,rep(cov,2),varF),ncol=2,nrow=2)
kb.temp = data.frame(year=yr,run=run,iter=1:mc,exp(mvtnorm::rmvnorm(mc ,mean = mvnmu,sigma = mvncov,method=c( "svd")))) # random MVN generator
colnames(kb.temp) = c("year","run","iter","stock","harvest")
if(length(quants)>0){
quant=NULL
for(qi in 1:length(quants)){
qy = hat[ylabel %in% paste0(quants[qi],"_",yr),]
qsd = sqrt(log(1+(qy$StdDev[1]/qy$Value[1])^2))
quant = cbind(quant,rlnorm(mc,log(qy$Value[1])-0.5*qsd*qsd,qsd))}
colnames(quant) = quants
kb.temp = cbind(kb.temp,quant)
}
kb = rbind(kb,cbind(kb.temp))
mle = rbind(mle,data.frame(year=yr,run=run,stock=y$Value[2],harvest=y$Value[1]))
}
# add mle quants
qmles = NULL
for(qi in 1:length(quants)){
qmles = cbind(qmles, hat[ylabel %in% paste0(quants[qi],"_",yrs),]$Value)
}
colnames(qmles) = quants
mle = cbind(mle,qmles)
# brp checks for starter file setting
refyr = max(yrs)
bt = hat[hat$Label==paste0("SSB_",refyr),2]
b0 =hat[hat$Label%in%c("SSB_unfished","SSB_Unfished"),2]
btrg = hat[hat$Label==paste0("SSB_Btgt"),2]
bmsy = hat[hat$Label==paste0("SSB_MSY"),2]
bb.check = c(bt/b0,bt/bmsy,bt/btrg)
# bratio definition
bratio = hat[hat$Label==paste0("Bratio_",refyr),2]
bb = which(abs(bratio-bb.check)==min(abs(bratio-bb.check)))
if(bb%in%c(1:2)==F) stop("Bratio in starter.sso must specified as either 1 or 2")
bbasis = c("SSB/SSB0","SSB/SSBMSY","SSB/SSBtrg")[bb]
fbasis = strsplit(ss3rep$F_report_basis,";")[[1]][1]
gettrg = strsplit(fbasis,"%")[[1]][1]
gettrg = as.numeric(strsplit(gettrg,"B")[[1]][2])
if(fbasis%in%c("_abs_F","(F)/(Fmsy)",paste0("(F)/(F_at_B",ss3rep$btarg*100,"%)"))){
fb = which(c("_abs_F","(F)/(Fmsy)",paste0("(F)/(F_at_B",ss3rep$btarg*100,"%)"))%in%fbasis)
} else {fb=3}
if(verbose) cat("\n","starter.sso with Bratio:",bbasis,"and F:",fbasis,"\n","\n")
bref = ifelse(ss3rep$btarg<0,gettrg/100,ss3rep$btarg)
if(is.na(bref)) bref = 0.4
# Take ratios
if(bb==1){
kb[,"stock"] = kb[,"stock"]/bref
mle[,"stock"] = mle[,"stock"]/bref
}
if(fb==1) warning("\n","stater.sso specifies Fratio as abs_F. To derive F/Fmsy, Fmsy is represented by the MLE without error")
if(fb==1 & Fref[1]=="MSY"){
if("Fstd_MSY"%in%hat$Label){
kb[,"harvest"] = kb[,"harvest"]/hat[hat$Label=="Fstd_MSY",2]
mle[,"harvest"] = mle[,"harvest"]/hat[hat$Label=="Fstd_MSY",2]
} else if("annF_MSY"%in%hat$Label) {
kb[,"harvest"] = kb[,"harvest"]/hat[hat$Label=="annF_MSY",2]
mle[,"harvest"] = mle[,"harvest"]/hat[hat$Label=="annF_MSY",2]
} else {
stop("This F label not defined (yet)")
}
}
if(fb==1 & Fref[1]=="Ftrg") fb = 3
# Needs to be tested
if(fb==3){
if("Fstd_Btgt"%in%hat$Label){
kb[,"harvest"] = kb[,"harvest"]/hat[hat$Label=="Fstd_Btgt",2]
mle[,"harvest"] = mle[,"harvest"]/hat[hat$Label=="Fstd_Btgt",2]
} else if("annF_Btgt"%in%hat$Label){
kb[,"harvest"] = kb[,"harvest"]/hat[hat$Label=="annF_Btgt",2]
mle[,"harvest"] = mle[,"harvest"]/hat[hat$Label=="annF_Btgt",2]
} else {
stop("This F label not defined (yet)")
}
}
# Add catch
C_obs = aggregate(Obs~Yr,ss3rep$catch,sum)
Cobs = C_obs[C_obs$Yr%in%yrs,]
foreyrs = unique(as.numeric(gsub(paste0("ForeCatch_"),"",hat$Label[grep(paste0("ForeCatch_"), hat$Label)])))
Cfore = data.frame(Yr=foreyrs,Obs=hat$Value[hat$Label%in%paste0("ForeCatch_",foreyrs)] )
Catch = rbind(Cobs,Cfore)
Catch = Catch[Catch$Yr%in%yrs,]
kb$catch = rep(Catch$Obs,each=max(kb$iter))
mle$catch = Catch$Obs
trg =round(bref*100,0)
xlab = c(bquote("SSB/SSB"[.(trg)]),expression(SSB/SSB[MSY]))[bb]
ylab = c(expression(F/F[MSY]),expression(F/F[MSY]),bquote("F/F"[.(trg)]))[fb]
if(plot==TRUE){
sh =c("stock","harvest")
if(is.null(xmax)) xmax= max(c(2,kb[kb$year==max(kb$year),sh[1]],mle[,sh[1]]))
if(is.null(ymax)) ymax = max(c(2,kb[kb$year==max(kb$year),sh[2]],mle[,sh[2]]))
stock = kb[kb$year==max(kb$year),sh[1]]
harvest = kb[kb$year==max(kb$year),sh[2]]
plot(kb[kb$year==max(kb$year),sh] ,type="n",ylab=ylab,xlab=xlab,xlim=c(0,xmax),ylim=c(0,ymax),yaxs="i",xaxs="i")
rect(1,0,100,1,col="green",border=0)
rect(0,0,1,1,col="yellow",border=0)
rect(0,1,1,100,col="red",border=0)
rect(1,1,100,100,col="orange",border=0)
points(kb[kb$year==max(kb$year),sh],pch=21,bg="grey",cex=0.7)
if(addtrj & nrow(mle)>3){
lines(mle[,sh])
points(mle[,sh],pch=21,cex=0.9,bg="white")
points(mle[1,sh],pch=24,bg="white",cex=1.7)
}
points(mle[nrow(mle),3:4],pch=21,bg="white",cex=2)
# Get Propability
Pr.green = sum(ifelse(stock>1 & harvest<1,1,0))/length(stock)*100
Pr.red = sum(ifelse(stock<1 & harvest>1,1,0))/length(stock)*100
Pr.yellow = sum(ifelse(stock<1 & harvest<1,1,0))/length(stock)*100
Pr.orange = sum(ifelse(stock>1 & harvest>1,1,0))/length(stock)*100
## Add legend
legend('topright',
c(paste0(round(c(Pr.red,Pr.yellow,Pr.orange,Pr.green),1),"%")),
pch=22,pt.bg=c("red","yellow","orange","green"),
col=1,cex=legendcex,pt.cex=2.2,bty="n")
}
labs = ifelse(quants=="Recr","Recruits",quants)
return(list(kb=kb,mle=mle,labels=c(xlab,ylab,labs)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.