#' Run COBRA in R
#'
#' Description:
#' COBRA decomposes a (partial) gene co-expression matrix as a
#' linear combination of covariate-specific components.
#' It can be applied for batch correction, differential co-expression
#' analysis controlling for variables, and to understand the impact of
#' variables of interest to the observed co-expression.
#'
#' Inputs:
#' @param X : design matrix of size (n, q), n = number of samples, q = number of covariates
#' @param expressionData : gene expression as a matrix of size (g, n), g = number of genes
#' @param method : if pearson, the decomposition of the co-expression matrix is compouted. If pcorsh, COBRA decomposes the regularized partial co-expression
#'
#' Outputs:
#' @return psi : impact of each covariate on the eigenvalues as a matrix of size (q, n)
#' @return Q : eigenvectors corresponding to non-zero eigenvalues as a matrix of size (g, n)
#' @return D : non-zero eigenvalues as a list of length n
#' @return G : (standardized) gene expression as a matrix of size (g, n)
#'
#' @examples
#'
#' g <- 100 # number of genes
#' n <- 10 # number of samples
#' q <- 2 # number of covariates
#' X <- X <- cbind(rep(1, n), rbinom(n, 1, 0.5))
#' expressionData=matrix(rnorm(g*n, 1, 1), ncol = n, nrow = g)
#'
#' # Run COBRA algorithm
#' cobra_output <- cobra(X, expressionData)
#'
#' @export
cobra <- function(X, expressionData, method = "pearson"){
if(!(method %in% c("pearson", "pcorsh", "dragon"))){
stop("Only Pearson and pcor methods are supported. Please make sure to provide a valid method argument.")
}
numSamples <- ncol(expressionData)
if(method != "dragon"){
N <- min(ncol(expressionData),nrow(expressionData))
}
C <- 0
if(method == "pearson"){
G_star <- expressionData-rowMeans(expressionData)
expressionData <- (G_star/sqrt(rowSums(G_star^2)))
expressionData <- as.matrix(expressionData)
C <- tcrossprod(expressionData)
}
if(method == "dragon"){
if(length(expressionData) != 2){
stop("Dragon needs two layers, please provide a list of two matrices in expressionData or consider using the pcorsh argument")
}
if(dim(expressionData[[1]])[2] != dim(expressionData[[2]])[2]){
stop("Dragon layers in expressionData list must have the same number of samples")
}
C <- dragon(t(expressionData[[1]]), layer2 = t(expressionData[[2]]), pval=FALSE)$cov
N <- dim(expressionData[[1]])[2]
numSamples <- N
expressionData <- rbind(expressionData[[1]], expressionData[[2]])
print(dim(expressionData))
}
if(method == "pcorsh"){
C <- matrix(as.numeric(corpcor::pcor.shrink(t(expressionData))), dim(expressionData)[1], dim(expressionData)[1])
}
eigenG <- rARPACK::eigs_sym(C,N)
Q <- eigenG$vectors
D <- diag(eigenG$values)
hatmat <- ginv(crossprod(X))%*%t(X)
Qinv <- ginv(Q)
QinvG <- Qinv%*%(expressionData)
est <- t(sapply(seq_len(nrow(hatmat)), function(hatmatRow){
diag(QinvG%*%(numSamples*diag(hatmat[hatmatRow,]))%*%t(QinvG))
}))
list(psi=est, Q=Q, D=eigenG$values, G=expressionData)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.