#' rho_j Importance Sampling Step
#'
#' rho_j Importance Sampling weighting for Bayesian robust regression
#'
#' @param particle_set particles set prior to Q importance sampling step
#' @param m number of sub-posteriors to combine
#' @param time_mesh time mesh used in Bayesian Fusion
#' @param dim dimension of the predictors (= p+1)
#' @param data_split list of length m where each item is a list of length 4 where
#' for c=1,...,m, data_split[[c]]$y is the vector for y responses and
#' data_split[[c]]$X is the design matrix for the covariates for
#' sub-posterior c
#' @param nu degrees of freedom in t-distribution
#' @param sigma scale parameter in t-distribution
#' @param prior_means prior for means of predictors
#' @param prior_variances prior for variances of predictors
#' @param C overall number of sub-posteriors
#' @param precondition_matrices list of length m, where precondition_matrices[[c]]
#' is the precondition matrix for sub-posterior c
#' @param inv_precondition_matrices list of length m, where inv_precondition_matrices[[c]]
#' is the inverse precondition matrix for sub-posterior c
#' @param Lambda inverse of the sum of the inverse precondition matrices (which
#' can be computed using inverse_sum_matrices(inv_precondition_matrices))
#' @param sub_posterior_means matrix with m rows and d columns, where sub_posterior_means[c,]
#' is the sub-posterior mean of sub-posterior c
#' @param adaptive_mesh logical value to indicate if an adaptive mesh is used
#' (default is FALSE)
#' @param adaptive_mesh_parameters list of parameters used for adaptive mesh
#' @param record logical value indicating if variables such as E[nu_j], chosen,
#' mesh_terms and k4_choice should be recorded at each iteration
#' and returned (see return variables for this function) - default
#' is FALSE
#' @param diffusion_estimator choice of unbiased estimator for the Exact Algorithm
#' between "Poisson" (default) for Poisson estimator
#' and "NB" for Negative Binomial estimator
#' @param beta_NB beta parameter for Negative Binomial estimator (default 10)
#' @param gamma_NB_n_points number of points used in the trapezoidal estimation
#' of the integral found in the mean of the negative
#' binomial estimator (default is 2)
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#' @param cl an object of class "cluster" for parallel computation in R. If none
#' is passed, then one is created and used within this function
#' @param level indicates which level this is for the hierarchy (default 1)
#' @param node indicates which node this is for the hierarchy (default 1)
#' @param print_progress_iters number of iterations between each progress update
#' (default is 1000). If NULL, progress will only
#' be updated when importance sampling is finished
#'
#' @return A list with components:
#' \describe{
#' \item{particle_set}{updated particle set after the iterative rho_j steps}
#' \item{proposed_samples}{proposal samples for the last time step}
#' \item{time}{elapsed time of each step of the algorithm}
#' \item{ESS}{effective sample size of the particles after each step}
#' \item{CESS}{conditional effective sample size of the particles after each step}
#' \item{resampled}{boolean value to indicate if particles were resampled
#' after each time step}
#' }
#' If record is set to TRUE, additional components will be returned:
#' \describe{
#' \item{E_nu_j}{approximation of the average variation of the trajectories
#' at each time step}
#' \item{chosen}{which term was chosen if using an adaptive mesh at each time step}
#' \item{mesh_terms}{the evaluated terms in deciding the mesh at each time step}
#' \item{k4_choice}{which of the roots of k4 were chosen}
#' }
#'
#' @export
rho_j_BRR <- function(particle_set,
m,
time_mesh,
dim,
data_split,
nu,
sigma,
prior_means,
prior_variances,
C,
precondition_matrices,
inv_precondition_matrices,
Lambda,
resampling_method = 'multi',
ESS_threshold = 0.5,
sub_posterior_means = NULL,
adaptive_mesh = FALSE,
adaptive_mesh_parameters = NULL,
record = FALSE,
diffusion_estimator,
beta_NB = 10,
gamma_NB_n_points = 2,
seed = NULL,
n_cores = parallel::detectCores(),
cl = NULL,
level = 1,
node = 1,
print_progress_iters = 1000) {
if (!("particle" %in% class(particle_set))) {
stop("rho_j_BRR: particle_set must be a \"particle\" object")
} else if (!is.list(data_split) | length(data_split)!=m) {
stop("rho_j_BRR: data_split must be a list of length m")
} else if (!is.vector(time_mesh)) {
stop("rho_j_BRR: time_mesh must be an ordered vector of length >= 2")
} else if (length(time_mesh) < 2) {
stop("rho_j_BRR: time_mesh must be an ordered vector of length >= 2")
} else if (!identical(time_mesh, sort(time_mesh))) {
stop("rho_j_BRR: time_mesh must be an ordered vector of length >= 2")
} else if (!all(sapply(1:m, function(i) is.vector(data_split[[i]]$y)))) {
stop("rho_j_BRR: for each i in 1:m, data_split[[i]]$y must be a vector")
} else if (!all(sapply(1:m, function(i) is.matrix(data_split[[i]]$X)))) {
stop("rho_j_BRR: for each i in 1:m, data_split[[i]]$X must be a matrix")
} else if (!all(sapply(1:m, function(i) ncol(data_split[[i]]$X)==dim))) {
stop("rho_j_BRR: for each i in 1:m, ncol(data_split[[i]]$X) must be equal to dim")
} else if (!all(sapply(1:m, function(i) length(data_split[[i]]$y)==nrow(data_split[[i]]$X)))) {
stop("rho_j_BRR: for each i in 1:m, length(data_split[[i]]$y) and nrow(data_split[[i]]$X) must be equal")
} else if (!is.vector(prior_means) | length(prior_means)!=dim) {
stop("rho_j_BRR: prior_means must be vectors of length dim")
} else if (!is.vector(prior_variances) | length(prior_variances)!=dim) {
stop("rho_j_BRR: prior_variances must be vectors of length dim")
} else if (!is.list(precondition_matrices) | (length(precondition_matrices)!=m)) {
stop("rho_j_BRR: precondition_matrices must be a list of length m")
} else if (!is.list(inv_precondition_matrices) | (length(inv_precondition_matrices)!=m)) {
stop("rho_j_BRR: inv_precondition_matrices must be a list of length m")
} else if (!(diffusion_estimator %in% c('Poisson', 'NB'))) {
stop("rho_j_BRR: diffusion_estimator must be set to either \'Poisson\' or \'NB\'")
} else if (!any(class(cl)=="cluster") & !is.null(cl)) {
stop("rho_j_BRR: cl must be a \"cluster\" object or NULL")
}
if (adaptive_mesh) {
if (!is.matrix(sub_posterior_means)) {
stop("rho_j_BRR: if adaptive_mesh==TRUE, sub_posterior_means must be a (m x dim) matrix")
} else if (any(dim(sub_posterior_means)!=c(m,dim))) {
stop("rho_j_BRR: if adaptive_mesh==TRUE, sub_posterior_means must be a (m x dim) matrix")
}
}
transform_matrices <- lapply(1:m, function(c) {
list('to_Z' = expm::sqrtm(inv_precondition_matrices[[c]]),
'to_X' = expm::sqrtm(precondition_matrices[[c]]))
})
transformed_design_matrices <- lapply(1:m, function(c) data_split[[c]]$X %*% transform_matrices[[c]]$to_X)
N <- particle_set$N
# ---------- creating parallel cluster
if (is.null(cl)) {
cl <- parallel::makeCluster(n_cores, setup_strategy = "sequential", outfile = "GBF_BRR_outfile.txt")
parallel::clusterExport(cl, varlist = ls("package:DCFusion"))
parallel::clusterExport(cl, varlist = ls("package:layeredBB"))
close_cluster <- TRUE
} else {
close_cluster <- FALSE
}
parallel::clusterExport(cl, envir = environment(), varlist = ls())
if (!is.null(seed)) {
parallel::clusterSetRNGStream(cl, iseed = seed)
}
max_samples_per_core <- ceiling(N/n_cores)
split_indices <- split(1:N, ceiling(seq_along(1:N)/max_samples_per_core))
elapsed_time <- rep(NA, length(time_mesh)-1)
ESS <- c(particle_set$ESS[1], rep(NA, length(time_mesh)-1))
CESS <- c(particle_set$CESS[1], rep(NA, length(time_mesh)-1))
resampled <- rep(FALSE, length(time_mesh))
if (record) {
if (adaptive_mesh) {
E_nu_j <- rep(NA, length(time_mesh))
chosen <- rep("", length(time_mesh))
mesh_terms <- rep(list(c(NA,NA)), length(time_mesh))
k4_choice <- rep(NA, length(time_mesh))
} else {
E_nu_j <- NA
chosen <- NULL
mesh_terms <- NULL
k4_choice <- NULL
}
}
if (is.null(print_progress_iters)) {
print_progress_iters <- split_N
}
end_time <- time_mesh[length(time_mesh)]
j <- 1
while (time_mesh[j]!=end_time) {
pcm <- proc.time()
j <- j+1
# ----------- resample particle_set (only resample if ESS < N*ESS_threshold)
if (particle_set$ESS < N*ESS_threshold) {
resampled[j-1] <- TRUE
particle_set <- resample_particle_x_samples(N = N,
particle_set = particle_set,
multivariate = TRUE,
step = j-1,
resampling_method = resampling_method,
seed = seed)
} else {
resampled[j-1] <- FALSE
}
# ----------- if adaptive_mesh==TRUE, find mesh for jth iteration
if (adaptive_mesh) {
if (particle_set$number_of_steps < j) {
particle_set$number_of_steps <- j
particle_set$CESS[j] <- NA
particle_set$resampled[j] <- FALSE
}
tilde_Delta_j <- mesh_guidance_adaptive(C = m,
d = dim,
data_size = adaptive_mesh_parameters$data_size,
b = adaptive_mesh_parameters$b,
threshold = adaptive_mesh_parameters$CESS_j_threshold,
particle_set = particle_set,
sub_posterior_means = sub_posterior_means,
inv_precondition_matrices = inv_precondition_matrices,
k3 = adaptive_mesh_parameters$k3,
k4 = adaptive_mesh_parameters$k4,
vanilla = adaptive_mesh_parameters$vanilla)
if (record) {
E_nu_j[j] <- tilde_Delta_j$E_nu_j
chosen[j] <- tilde_Delta_j$chosen
mesh_terms[[j]] <- c(tilde_Delta_j$T1, tilde_Delta_j$T2)
k4_choice[j] <- tilde_Delta_j$k4_choice
}
time_mesh[j] <- min(end_time, time_mesh[j-1]+tilde_Delta_j$max_delta_j)
}
split_x_samples <- lapply(split_indices, function(indices) particle_set$x_samples[indices])
split_x_means <- lapply(split_indices, function(indices) particle_set$x_means[indices,,drop = FALSE])
V <- construct_V(s = time_mesh[j-1],
t = time_mesh[j],
end_time = end_time,
C = m,
d = dim,
precondition_matrices = precondition_matrices,
Lambda = Lambda,
iteration = j)
rho_j_weighted_samples <- parallel::parLapply(cl, X = 1:length(split_indices), fun = function(core) {
split_N <- length(split_indices[[core]])
x_mean_j <- matrix(data = NA, nrow = split_N, ncol = dim)
log_rho_j <- rep(0, split_N)
x_j <- lapply(1:split_N, function(i) {
M <- construct_M(s = time_mesh[j-1],
t = time_mesh[j],
end_time = end_time,
C = m,
d = dim,
sub_posterior_samples = split_x_samples[[core]][[i]],
sub_posterior_mean = split_x_means[[core]][i,],
iteration = j)
if (time_mesh[j]!=end_time) {
return(matrix(mvrnormArma(N = 1, mu = M, Sigma = V), nrow = m, ncol = dim, byrow = TRUE))
} else {
return(matrix(mvtnorm::rmvnorm(n = 1, mean = M, sigma = V), nrow = m, ncol = dim, byrow = TRUE))
}
})
if (core == 1) {
cat('##### t_{j-1}:', time_mesh[j-1], '|| t_{j}:', time_mesh[j], '|| T:',
end_time, '#####\n', file = 'rho_j_BRR_progress.txt', append = T)
}
cat('Level:', level, '|| Step:', j, '/', length(time_mesh), '|| Node:', node,
'|| Core:', core, '|| START \n', file = 'rho_j_BRR_progress.txt', append = T)
for (i in 1:split_N) {
x_mean_j[i,] <- weighted_mean_multivariate(matrix = x_j[[i]],
weights = inv_precondition_matrices,
inverse_sum_weights = Lambda)
phi <- lapply(1:m, function(c) {
ea_BRR_DL_PT(dim = dim,
x0 = as.vector(split_x_samples[[core]][[i]][c,]),
y = as.vector(x_j[[i]][c,]),
s = time_mesh[j-1],
t = time_mesh[j],
data = data_split[[c]],
transformed_design_mat = transformed_design_matrices[[c]],
nu = nu,
sigma = sigma,
prior_means = prior_means,
prior_variances = prior_variances,
C = C,
precondition_mat = precondition_matrices[[c]],
transform_mats = transform_matrices[[c]],
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
logarithm = TRUE)})
log_rho_j[i] <- sum(sapply(1:m, function(c) phi[[c]]$phi))
if (i%%print_progress_iters==0) {
cat('Level:', level, '|| Step:', j, '/', length(time_mesh),
'|| Node:', node, '|| Core:', core, '||', i, '/', split_N, '\n',
file = 'rho_j_BRR_progress.txt', append = T)
}
}
cat('Level:', level, '|| Step:', j, '/', length(time_mesh),
'|| Node:', node, '|| Core:', core, '|| DONE ||', split_N, '/',
split_N, '\n', file = 'rho_j_BRR_progress.txt', append = T)
return(list('x_j' = x_j, 'x_mean_j' = x_mean_j, 'log_rho_j' = log_rho_j))
})
# ---------- update particle set
particle_set$x_samples <- unlist(lapply(1:length(split_indices), function(i) {
rho_j_weighted_samples[[i]]$x_j}), recursive = FALSE)
particle_set$x_means <- do.call(rbind, lapply(1:length(split_indices), function(i) {
rho_j_weighted_samples[[i]]$x_mean_j}))
log_rho_j <- unlist(lapply(1:length(split_indices), function(i) {
rho_j_weighted_samples[[i]]$log_rho_j}))
norm_weights <- particle_ESS(log_weights = particle_set$log_weights + log_rho_j)
particle_set$log_weights <- norm_weights$log_weights
particle_set$normalised_weights <- norm_weights$normalised_weights
particle_set$ESS <- norm_weights$ESS
ESS[j] <- particle_set$ESS
particle_set$CESS[j] <- particle_ESS(log_weights = log_rho_j)$ESS
CESS[j] <- particle_set$CESS[j]
elapsed_time[j-1] <- (proc.time()-pcm)['elapsed']
}
if (close_cluster) {
parallel::stopCluster(cl)
}
if (adaptive_mesh) {
CESS <- CESS[1:j]
ESS <- ESS[1:j]
resampled <- resampled[1:j]
particle_set$time_mesh <- time_mesh[1:j]
elapsed_time <- elapsed_time[1:(j-1)]
}
if (record) {
E_nu_j <- E_nu_j[1:j]
chosen <- chosen[1:j]
mesh_terms <- mesh_terms[1:j]
k4_choice <- k4_choice[1:j]
}
proposed_samples <- t(sapply(1:N, function(i) particle_set$x_samples[[i]][1,]))
particle_set$y_samples <- proposed_samples
# ----------- resample particle_set (only resample if ESS < N*ESS_threshold)
if (particle_set$ESS < N*ESS_threshold) {
resampled[particle_set$number_of_steps] <- TRUE
particle_set <- resample_particle_y_samples(N = N,
particle_set = particle_set,
multivariate = TRUE,
resampling_method = resampling_method,
seed = seed)
} else {
resampled[particle_set$number_of_steps] <- FALSE
}
if (record) {
return(list('particle_set' = particle_set,
'proposed_samples' = proposed_samples,
'time' = elapsed_time,
'ESS' = ESS,
'CESS' = CESS,
'resampled' = resampled,
'E_nu_j' = E_nu_j,
'chosen' = chosen,
'mesh_terms' = mesh_terms,
'k4_choice' = k4_choice))
} else {
return(list('particle_set' = particle_set,
'proposed_samples' = proposed_samples,
'time' = elapsed_time,
'ESS' = ESS,
'CESS' = CESS,
'resampled' = resampled))
}
}
#' Generalised Bayesian Fusion [parallel]
#'
#' Generalised Bayesian Fusion for Bayesian Logistic Regression
#'
#' @param particles_to_fuse list of length m, where particles_to_fuse[c] contains
#' the particles for the c-th sub-posterior. Can
#' initialise a this from list of sub-posterior samples
#' by using the initialise_particle_sets function
#' @param N number of samples
#' @param m number of sub-posteriors to combine
#' @param time_mesh time mesh used in Bayesian Fusion
#' @param dim dimension of the predictors (= p+1)
#' @param data_split list of length m where each item is a list of length 4 where
#' for c=1,...,m, data_split[[c]]$y is the vector for y responses and
#' data_split[[c]]$X is the design matrix for the covariates for
#' sub-posterior c
#' @param nu degrees of freedom in t-distribution
#' @param sigma scale parameter in t-distribution
#' @param prior_means prior for means of predictors
#' @param prior_variances prior for variances of predictors
#' @param C overall number of sub-posteriors
#' @param precondition_matrices list of length m, where precondition_matrices[[c]]
#' is the precondition matrix for sub-posterior c
#' @param resampling_method method to be used in resampling, default is multinomial
#' resampling ('multi'). Other choices are stratified
#' resampling ('strat'), systematic resampling ('system'),
#' residual resampling ('resid')
#' @param ESS_threshold number between 0 and 1 defining the proportion of the
#' number of samples that ESS needs to be lower than for
#' resampling (i.e. resampling is carried out only when
#' ESS < N*ESS_threshold)
#' @param sub_posterior_means matrix with m rows and d columns, where sub_posterior_means[c,]
#' is the sub-posterior mean of sub-posterior c
#' @param adaptive_mesh logical value to indicate if an adaptive mesh is used
#' (default is FALSE)
#' @param adaptive_mesh_parameters list of parameters used for adaptive mesh
#' @param record logical value indicating if variables such as E[nu_j], chosen,
#' mesh_terms and k4_choice should be recorded at each iteration
#' and returned (see return variables for this function) - default
#' is FALSE
#' @param diffusion_estimator choice of unbiased estimator for the Exact Algorithm
#' between "Poisson" (default) for Poisson estimator
#' and "NB" for Negative Binomial estimator
#' @param beta_NB beta parameter for Negative Binomial estimator (default 10)
#' @param gamma_NB_n_points number of points used in the trapezoidal estimation
#' of the integral found in the mean of the negative
#' binomial estimator (default is 2)
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#' @param cl an object of class "cluster" for parallel computation in R. If none
#' is passed, then one is created and used within this function
#' @param level indicates which level this is for the hierarchy (default 1)
#' @param node indicates which node this is for the hierarchy (default 1)
#' @param print_progress_iters number of iterations between each progress update
#' (default is 1000). If NULL, progress will only
#' be updated when importance sampling is finished
#'
#' @return A list with components:
#' \describe{
#' \item{particles}{particles returned from fusion sampler}
#' \item{proposed_samples}{proposal samples from fusion sampler}
#' \item{time}{run-time of fusion sampler}
#' \item{elapsed_time}{elapsed time of each step of the algorithm}
#' \item{time_mesh}{time_mesh used}
#' \item{ESS}{effective sample size of the particles after each step}
#' \item{CESS}{conditional effective sample size of the particles after each step}
#' \item{resampled}{boolean value to indicate if particles were resampled
#' after each time step}
#' \item{precondition_matrices}{list of length 2 where precondition_matrices[[2]]
#' are the pre-conditioning matrices that were used
#' and precondition_matrices[[1]] are the combined
#' precondition matrices}
#' \item{sub_posterior_means}{list of length 2, where sub_posterior_means[[2]]
#' are the sub-posterior means that were used and
#' sub_posterior_means[[1]] are the combined
#' sub-posterior means}
#' \item{combined_data}{combined data for the fusion density}
#' }
#' If record is set to TRUE, additional components will be returned:
#' \describe{
#' \item{E_nu_j}{approximation of the average variation of the trajectories
#' at each time step}
#' \item{chosen}{which term was chosen if using an adaptive mesh at each time step}
#' \item{mesh_terms}{the evaluated terms in deciding the mesh at each time step}
#' \item{k4_choice}{which of the roots of k4 were chosen}
#' }
#'
#' @export
parallel_GBF_BRR <- function(particles_to_fuse,
N,
m,
time_mesh,
dim,
data_split,
nu,
sigma,
prior_means,
prior_variances,
C,
precondition_matrices,
inv_precondition_matrices = NULL,
Lambda = NULL,
resampling_method = 'multi',
ESS_threshold = 0.5,
sub_posterior_means = NULL,
adaptive_mesh = FALSE,
adaptive_mesh_parameters = NULL,
record = FALSE,
diffusion_estimator = 'Poisson',
beta_NB = 10,
gamma_NB_n_points = 2,
seed = NULL,
n_cores = parallel::detectCores(),
cl = NULL,
level = 1,
node = 1,
print_progress_iters = 1000) {
if (!is.list(particles_to_fuse) | (length(particles_to_fuse)!=m)) {
stop("parallel_generalised_BF_SMC_BRR: particles_to_fuse must be a list of length m")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) ("particle" %in% class(sub_posterior))))) {
stop("parallel_generalised_BF_SMC_BRR: particles in particles_to_fuse must be \"particle\" objects")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) is.matrix(sub_posterior$y_samples)))) {
stop("parallel_generalised_BF_SMC_BRR: the particles' samples for y should all be matrices")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) ncol(sub_posterior$y_samples)==dim))) {
stop("parallel_generalised_BF_SMC_BRR: the particles' samples for y should all be matrices with dim columns")
} else if (!is.vector(time_mesh)) {
stop("parallel_generalised_BF_SMC_BRR: time_mesh must be an ordered vector of length >= 2")
} else if (length(time_mesh) < 2) {
stop("parallel_generalised_BF_SMC_BRR: time_mesh must be an ordered vector of length >= 2")
} else if (!identical(time_mesh, sort(time_mesh))) {
stop("parallel_generalised_BF_SMC_BRR: time_mesh must be an ordered vector of length >= 2")
} else if (!is.list(data_split) | length(data_split)!=m) {
stop("parallel_generalised_BF_SMC_BRR: data_split must be a list of length m")
} else if (!all(sapply(1:m, function(i) is.vector(data_split[[i]]$y)))) {
stop("parallel_generalised_BF_SMC_BRR: for each i in 1:m, data_split[[i]]$y must be a vector")
} else if (!all(sapply(1:m, function(i) is.matrix(data_split[[i]]$X)))) {
stop("parallel_generalised_BF_SMC_BRR: for each i in 1:m, data_split[[i]]$X must be a matrix")
} else if (!all(sapply(1:m, function(i) ncol(data_split[[i]]$X)==dim))) {
stop("parallel_generalised_BF_SMC_BRR: for each i in 1:m, data_split[[i]]$X must be a matrix with dim columns")
} else if (!all(sapply(1:m, function(i) length(data_split[[i]]$y)==nrow(data_split[[i]]$X)))) {
stop("parallel_generalised_BF_SMC_BRR: for each i in 1:m, length(data_split[[i]]$y) and nrow(data_split[[i]]$X) must be equal")
} else if (!is.vector(prior_means) | length(prior_means)!=dim) {
stop("parallel_generalised_BF_SMC_BRR: prior_means must be vectors of length dim")
} else if (!is.vector(prior_variances) | length(prior_variances)!=dim) {
stop("parallel_generalised_BF_SMC_BRR: prior_variances must be vectors of length dim")
} else if (!is.list(precondition_matrices) | (length(precondition_matrices)!=m)) {
stop("parallel_generalised_BF_SMC_BRR: precondition_matrices must be a list of length m")
} else if (!(diffusion_estimator %in% c('Poisson', 'NB'))) {
stop("parallel_generalised_BF_SMC_BRR: diffusion_estimator must be set to either \'Poisson\' or \'NB\'")
} else if ((ESS_threshold < 0) | (ESS_threshold > 1)) {
stop("parallel_generalised_BF_SMC_BRR: ESS_threshold must be between 0 and 1")
} else if (!any(class(cl)=="cluster") & !is.null(cl)) {
stop("parallel_generalised_BF_SMC_BRR: cl must be a \"cluster\" object or NULL")
}
if (!is.null(seed)) {
set.seed(seed)
}
pcm <- proc.time()
# ---------- creating parallel cluster
if (is.null(cl)) {
cl <- parallel::makeCluster(n_cores, setup_strategy = "sequential", outfile = "GBF_BRR_outfile.txt")
parallel::clusterExport(cl, varlist = ls("package:layeredBB"))
parallel::clusterExport(cl, varlist = ls("package:DCFusion"))
close_cluster <- TRUE
} else {
close_cluster <- FALSE
}
parallel::clusterExport(cl, envir = environment(), varlist = ls())
if (!is.null(seed)) {
parallel::clusterSetRNGStream(cl, iseed = seed)
}
# ---------- first importance sampling step
if (is.null(inv_precondition_matrices)) {
inv_precondition_matrices <- lapply(precondition_matrices, solve)
}
if (is.null(Lambda)) {
Lambda <- inverse_sum_matrices(inv_precondition_matrices)
}
pcm_rho_0 <- proc.time()
particles <- rho_IS_multivariate(particles_to_fuse = particles_to_fuse,
dim = dim,
N = N,
m = m,
time = time_mesh[length(time_mesh)],
inv_precondition_matrices = inv_precondition_matrices,
inverse_sum_inv_precondition_matrices = Lambda,
number_of_steps = length(time_mesh),
time_mesh = time_mesh,
resampling_method = resampling_method,
seed = seed,
n_cores = n_cores,
cl = cl)
elapsed_time_rho_0 <- (proc.time()-pcm_rho_0)['elapsed']
# ---------- iterative steps
rho_j <- rho_j_BRR(particle_set = particles,
m = m,
time_mesh = time_mesh,
dim = dim,
data_split = data_split,
nu = nu,
sigma = sigma,
prior_means = prior_means,
prior_variances = prior_variances,
C = C,
precondition_matrices = precondition_matrices,
inv_precondition_matrices = inv_precondition_matrices,
Lambda = Lambda,
resampling_method = resampling_method,
ESS_threshold = ESS_threshold,
sub_posterior_means = sub_posterior_means,
adaptive_mesh = adaptive_mesh,
adaptive_mesh_parameters = adaptive_mesh_parameters,
record = record,
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
seed = seed,
n_cores = n_cores,
cl = cl,
level = level,
node = node,
print_progress_iters = print_progress_iters)
if (close_cluster) {
parallel::stopCluster(cl)
}
if (identical(precondition_matrices, rep(list(diag(1, dim)), m))) {
new_precondition_matrices <- list(diag(1, dim), precondition_matrices)
} else {
new_precondition_matrices <- list(inverse_sum_matrices(inv_precondition_matrices),
precondition_matrices)
}
if (!is.null(sub_posterior_means)) {
new_sub_posterior_means <- list(t(weighted_mean_multivariate(matrix = sub_posterior_means,
weights = inv_precondition_matrices,
inverse_sum_weights = Lambda)),
sub_posterior_means)
} else {
new_sub_posterior_means <- list(NULL, sub_posterior_means)
}
if (record) {
return(list('particles' = rho_j$particle_set,
'proposed_samples' = rho_j$proposed_samples,
'time' = (proc.time()-pcm)['elapsed'],
'elapsed_time' = c(elapsed_time_rho_0, rho_j$time),
'time_mesh' = rho_j$particle_set$time_mesh,
'ESS' = rho_j$ESS,
'CESS' = rho_j$CESS,
'resampled' = rho_j$resampled,
'E_nu_j' = rho_j$E_nu_j,
'chosen' = rho_j$chosen,
'mesh_terms' = rho_j$mesh_terms,
'k4_choice' = rho_j$k4_choice,
'precondition_matrices' = new_precondition_matrices,
'sub_posterior_means' = new_sub_posterior_means,
'combined_data' = combine_data(list_of_data = data_split, dim = dim)))
} else {
return(list('particles' = rho_j$particle_set,
'proposed_samples' = rho_j$proposed_samples,
'time' = (proc.time()-pcm)['elapsed'],
'elapsed_time' = c(elapsed_time_rho_0, rho_j$time),
'time_mesh' = rho_j$particle_set$time_mesh,
'ESS' = rho_j$ESS,
'CESS' = rho_j$CESS,
'resampled' = rho_j$resampled,
'precondition_matrices' = new_precondition_matrices,
'sub_posterior_means' = new_sub_posterior_means,
'combined_data' = combine_data(list_of_data = data_split, dim = dim)))
}
}
#' (Balanced Binary) D&C Generalised Bayesian Fusion using SMC
#'
#' (Balanced Binary) D&C Generalised Bayesian Fusion using SMC for Bayesian Logistic Regression
#'
#' @param N_schedule vector of length (L-1), where N_schedule[l] is the
#' number of samples per node at level l
#' @param m_schedule vector of length (L-1), where m_schedule[k] is the number
#' of samples to fuse for level k
#' @param time_mesh time mesh used in Bayesian Fusion. This can either be a vector
#' which will be used for each node in the tree, or it can be
#' passed in as NULL, where a recommended mesh will be generated
#' using the parameters passed into mesh_parameters
#' @param base_samples list of length C, where base_samples[[c]] contains
#' the samples for the c-th node in the level
#' @param L total number of levels in the hierarchy
#' @param dim dimension of the predictors (= p+1)
#' @param data_split list of length m where each item is a list of length 4 where
#' for c=1,...,m, data_split[[c]]$y is the vector for y responses and
#' data_split[[c]]$X is the design matrix for the covariates for
#' sub-posterior c
#' @param nu degrees of freedom in t-distribution
#' @param sigma scale parameter in t-distribution
#' @param prior_means prior for means of predictors
#' @param prior_variances prior for variances of predictors
#' @param C number of sub-posteriors at the base level
#' @param precondition either a logical value to determine if preconditioning matrices are
#' used (TRUE - and is set to be the variance of the sub-posterior samples)
#' or not (FALSE - and is set to be the identity matrix for all sub-posteriors),
#' or a list of length (1/start_beta) where precondition[[c]]
#' is the preconditioning matrix for sub-posterior c. Default is TRUE
#' @param resampling_method method to be used in resampling, default is
#' multinomial resampling ('multi'). Other choices are
#' stratified ('strat'), systematic ('system'),
#' residual ('resid')
#' @param ESS_threshold number between 0 and 1 defining the proportion
#' of the number of samples that ESS needs to be
#' lower than for resampling (i.e. resampling is carried
#' out only when ESS < N*ESS_threshold)
#' @param adaptive_mesh logical value to indicate if an adaptive mesh is used
#' (default is FALSE)
#' @param adaptive_mesh_parameters list of parameters used for adaptive mesh
#' @param record logical value indicating if variables such as E[nu_j], chosen,
#' mesh_terms and k4_choice should be recorded at each iteration
#' and returned (see return variables for this function) - default
#' is FALSE
#' @param diffusion_estimator choice of unbiased estimator for the Exact Algorithm
#' between "Poisson" (default) for Poisson estimator
#' and "NB" for Negative Binomial estimator
#' @param beta_NB beta parameter for Negative Binomial estimator (default 10)
#' @param gamma_NB_n_points number of points used in the trapezoidal estimation
#' of the integral found in the mean of the negative
#' binomial estimator (default is 2)
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#' @param print_progress_iters number of iterations between each progress update
#' (default is 1000). If NULL, progress will only
#' be updated when importance sampling is finished
#'
#' @return A list with components:
#' \describe{
#' \item{particles}{list of length (L-1), where particles[[l]][[i]] are the
#' particles for level l, node i}
#' \item{proposed_samples}{list of length (L-1), where proposed_samples[[l]][[i]]
#' are the proposed samples for level l, node i}
#' \item{time}{list of length (L-1), where time[[l]][[i]] is the run time
#' for level l, node i}
#' \item{elapsed_time}{list of length (L-1), where elapsed_time[[l]][[i]]
#' is the elapsed time of each step of the algorithm for
#' level l, node i}
#' \item{time_mesh}{list of length (L-1), where time_mesh[[l]][[i]]
#' is the time_mesh used for level l, node i}
#' \item{ESS}{list of length (L-1), where ESS[[l]][[i]] is the effective
#' sample size of the particles after each step BEFORE deciding
#' whether or not to resample for level l, node i}
#' \item{CESS}{list of length (L-1), where ESS[[l]][[i]] is the conditional
#' effective sample size of the particles after each step}
#' \item{resampled}{list of length (L-1), where resampled[[l]][[i]] is a
#' boolean value to record if the particles were resampled
#' after each step; rho and Q for level l, node i}
#' \item{precondition_matrices}{pre-conditioning matrices that were used}
#' \item{sub_posterior_means}{sub-posterior means that were used}
#' \item{recommended_mesh}{list of length (L-1), where recommended_mesh[[l]][[i]]
#' is the recommended mesh for level l, node i}
#' \item{data_inputs}{list of length (L-1), where data_inputs[[l]][[i]] is the
#' data input for the sub-posterior in level l, node i}
#' }
#' If record is set to TRUE, additional components will be returned:
#' \describe{
#' \item{E_nu_j}{list of length (L-1), where E_nu_j[[l]][[i]] is the
#' approximation of the average variation of the trajectories
#' at each time step for level l, node i}
#' \item{chosen}{list of length (L-1), where chosen[[l]][[i]] indicates
#' which term was chosen if using an adaptive mesh at each
#' time step for level l, node i}
#' \item{mesh_terms}{list of length (L-1), where mesh_terms[[l]][[i]] indicates
#' the evaluated terms in deciding the mesh at each time step
#' for level l, node i}
#' \item{k4_choice}{list of length (L-1), where k4_choice[[l]][[i]]] indicates
#' which of the roots of k4 were chosen at each time step for
#' level l, node i}
#' }
#'
#' @export
bal_binary_GBF_BRR <- function(N_schedule,
m_schedule,
time_mesh = NULL,
base_samples,
L,
dim,
data_split,
nu,
sigma,
prior_means,
prior_variances,
C,
precondition = TRUE,
resampling_method = 'multi',
ESS_threshold = 0.5,
adaptive_mesh = FALSE,
mesh_parameters = NULL,
record = FALSE,
diffusion_estimator = 'Poisson',
beta_NB = 10,
gamma_NB_n_points = 2,
seed = NULL,
n_cores = parallel::detectCores(),
print_progress_iters = 1000) {
if (!is.vector(N_schedule) | (length(N_schedule)!=(L-1))) {
stop("bal_binary_GBF_BRR: N_schedule must be a vector of length (L-1)")
} else if (!is.vector(m_schedule) | (length(m_schedule)!=(L-1))) {
stop("bal_binary_GBF_BRR: m_schedule must be a vector of length (L-1)")
} else if (!is.list(base_samples) | (length(base_samples)!=C)) {
stop("bal_binary_GBF_BRR: base_samples must be a list of length C")
} else if (!is.list(data_split) | length(data_split)!=C) {
stop("bal_binary_GBF_BRR: data_split must be a list of length C")
} else if (!all(sapply(1:C, function(i) is.vector(data_split[[i]]$y)))) {
stop("bal_binary_GBF_BRR: for each i in 1:C, data_split[[i]]$y must be a vector")
} else if (!all(sapply(1:C, function(i) is.matrix(data_split[[i]]$X)))) {
stop("bal_binary_GBF_BRR: for each i in 1:C, data_split[[i]]$X must be a matrix")
} else if (!all(sapply(1:C, function(i) ncol(data_split[[i]]$X)==dim))) {
stop("bal_binary_GBF_BRR: for each i in 1:C, data_split[[i]]$X must be a matrix with dim columns")
} else if (!all(sapply(1:C, function(i) length(data_split[[i]]$y)==nrow(data_split[[i]]$X)))) {
stop("bal_binary_GBF_BRR: for each i in 1:C, length(data_split[[i]]$y) and nrow(data_split[[i]]$X) must be equal")
} else if (!is.vector(prior_means) | length(prior_means)!=dim) {
stop("bal_binary_GBF_BRR: prior_means must be vectors of length dim")
} else if (!is.vector(prior_variances) | length(prior_variances)!=dim) {
stop("bal_binary_GBF_BRR: prior_variances must be vectors of length dim")
} else if (ESS_threshold < 0 | ESS_threshold > 1) {
stop("bal_binary_GBF_BRR: ESS_threshold must be between 0 and 1")
}
if (is.vector(m_schedule) & (length(m_schedule)==(L-1))) {
for (l in (L-1):1) {
if ((C/prod(m_schedule[(L-1):l]))%%1!=0) {
stop("bal_binary_GBF_BRR: check that C/prod(m_schedule[(L-1):l])
is an integer for l=L-1,...,1")
}
}
} else {
stop("bal_binary_GBF_BRR: m_schedule must be a vector of length (L-1)")
}
if (is.vector(time_mesh)) {
if (length(time_mesh) < 2) {
stop("bal_binary_GBF_BRR: time_mesh must be an ordered vector of length >= 2")
} else if (!identical(time_mesh, sort(time_mesh))) {
stop("bal_binary_GBF_BRR: time_mesh must be an ordered vector of length >= 2")
}
} else if (is.null(time_mesh)) {
if (!is.list(mesh_parameters)) {
stop("bal_binary_GBF_BRR: if time_mesh is NULL, mesh_parameters must be a
list of parameters to obtain guidance for the mesh")
}
} else {
stop("bal_binary_GBF_BRR: time_mesh must either be an ordered vector of length
>= 2 or passed as NULL if want to use recommended guidance")
}
m_schedule <- c(m_schedule, 1)
particles <- list()
if (all(sapply(base_samples, function(sub) class(sub)=='particle'))) {
particles[[L]] <- base_samples
} else if (all(sapply(base_samples, is.matrix))) {
if (!all(sapply(base_samples, function(core) ncol(core)==dim))) {
stop("bal_binary_GBF_BRR: the sub-posterior samples in base_samples must be matrices with dim columns")
}
particles[[L]] <- initialise_particle_sets(samples_to_fuse = base_samples,
multivariate = TRUE,
number_of_steps = 2)
} else {
stop("bal_binary_GBF_BRR: base_samples must be a list of length C
containing either items of class \"particle\" (representing particle
approximations of the sub-posteriors) or are matrices with dim columns
(representing un-normalised sample approximations of the sub-posteriors)")
}
proposed_samples <- list()
data_inputs <- list()
data_inputs[[L]] <- data_split
time <- list()
elapsed_time <- list()
used_time_mesh <- list()
ESS <- list()
CESS <- list()
resampled <- list()
if (record) {
E_nu_j <- list()
chosen <- list()
mesh_terms <- list()
k4_choice <- list()
}
recommended_mesh <- list()
precondition_matrices <- list()
if (is.logical(precondition)) {
if (precondition) {
precondition_matrices[[L]] <- lapply(base_samples, cov)
} else {
precondition_matrices[[L]] <- lapply(base_samples, function(c) diag(1, dim))
}
} else if (is.list(precondition)) {
if (length(precondition)==C & all(sapply(precondition, is.matrix))) {
if (all(sapply(precondition, function(sub) ncol(sub)==dim))) {
precondition_matrices[[L]] <- precondition
}
}
} else {
stop("bal_binary_GBF_BRR: precondition must be a logical indicating
whether or not a preconditioning matrix should be used, or a list of
length C, where precondition[[c]] is the preconditioning matrix for
the c-th sub-posterior")
}
sub_posterior_means <- list()
sub_posterior_means[[L]] <- t(sapply(base_samples, function(sub) apply(sub, 2, mean)))
cl <- parallel::makeCluster(n_cores, setup_strategy = "sequential", outfile = "SMC_BRR_outfile.txt")
parallel::clusterExport(cl, envir = environment(), varlist = ls())
parallel::clusterExport(cl, varlist = ls("package:DCFusion"))
parallel::clusterExport(cl, varlist = ls("package:layeredBB"))
cat('Starting bal_binary fusion \n', file = 'bal_binary_GBF_BRR.txt')
for (k in ((L-1):1)) {
n_nodes <- max(C/prod(m_schedule[L:k]), 1)
cat('########################\n', file = 'bal_binary_GBF_BRR.txt', append = T)
cat('Starting to fuse', m_schedule[k], 'sub-posteriors for level', k,
'using', n_cores, 'cores\n', file = 'bal_binary_GBF_BRR.txt', append = T)
cat('At this level, the data is split up into', (C/prod(m_schedule[L:(k+1)])), 'subsets\n',
file = 'bal_binary_GBF_BRR.txt', append = T)
cat('There are', n_nodes, 'nodes at the next level each giving', N_schedule[k],
'samples \n', file = 'bal_binary_GBF_BRR.txt', append = T)
cat('########################\n', file = 'bal_binary_GBF_BRR.txt', append = T)
fused <- lapply(X = 1:n_nodes, FUN = function(i) {
previous_nodes <- ((m_schedule[k]*i)-(m_schedule[k]-1)):(m_schedule[k]*i)
particles_to_fuse <- particles[[k+1]][previous_nodes]
precondition_mats <- precondition_matrices[[k+1]][previous_nodes]
inv_precondition_mats <- lapply(precondition_mats, solve)
Lambda <- inverse_sum_matrices(inv_precondition_mats)
sub_post_means <- sub_posterior_means[[k+1]][previous_nodes,]
if (is.null(time_mesh)) {
recommendation <- BF_guidance(condition = mesh_parameters$condition,
CESS_0_threshold = mesh_parameters$CESS_0_threshold,
CESS_j_threshold = mesh_parameters$CESS_j_threshold,
sub_posterior_samples = lapply(1:length(previous_nodes), function(i) {
particles_to_fuse[[i]]$y_samples}),
log_weights = lapply(1:length(previous_nodes), function(i) {
particles_to_fuse[[i]]$log_weights}),
C = m_schedule[k],
d = dim,
data_size = length(data_inputs[[k+1]][[1]]$y),
b = mesh_parameters$b,
sub_posterior_means = sub_post_means,
precondition_matrices = precondition_mats,
inv_precondition_matrices = inv_precondition_mats,
Lambda = Lambda,
lambda = mesh_parameters$lambda,
gamma = mesh_parameters$gamma,
k1 = mesh_parameters$k1,
k2 = mesh_parameters$k2,
k3 = mesh_parameters$k3,
k4 = mesh_parameters$k4,
vanilla = mesh_parameters$vanilla)
} else {
recommendation <- list('mesh' = time_mesh)
}
return(list('recommendation' = recommendation,
'fusion' = parallel_GBF_BRR(particles_to_fuse = particles_to_fuse,
N = N_schedule[k],
m = m_schedule[k],
time_mesh = recommendation$mesh,
dim = dim,
data_split = data_inputs[[k+1]][previous_nodes],
nu = nu,
sigma = sigma,
prior_means = prior_means,
prior_variances = prior_variances,
C = (C/prod(m_schedule[L:(k+1)])),
precondition_matrices = precondition_mats,
inv_precondition_matrices = inv_precondition_mats,
Lambda = Lambda,
resampling_method = resampling_method,
ESS_threshold = ESS_threshold,
sub_posterior_means = sub_post_means,
adaptive_mesh = adaptive_mesh,
adaptive_mesh_parameters = mesh_parameters,
record = record,
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
seed = seed,
n_cores = n_cores,
cl = cl,
level = k,
node = i,
print_progress_iters = print_progress_iters)))
})
particles[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$particles)
proposed_samples[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$proposed_samples)
time[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$time)
elapsed_time[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$elapsed_time)
used_time_mesh[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$time_mesh)
ESS[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$ESS)
CESS[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$CESS)
resampled[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$resampled)
if (record) {
E_nu_j[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$E_nu_j)
chosen[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$chosen)
mesh_terms[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$mesh_terms)
k4_choice[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$k4_choice)
}
precondition_matrices[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$precondition_matrices[[1]])
sub_posterior_means[[k]] <- do.call(rbind, lapply(1:n_nodes, function(i) fused[[i]]$fusion$sub_posterior_means[[1]]))
data_inputs[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$fusion$combined_data)
recommended_mesh[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$recommendation)
}
parallel::stopCluster(cl)
cat('Completed bal_binary fusion\n', file = 'bal_binary_GBF_BRR.txt', append = T)
if (length(particles[[1]])==1) {
particles[[1]] <- particles[[1]][[1]]
proposed_samples[[1]] <- proposed_samples[[1]][[1]]
time[[1]] <- time[[1]][[1]]
elapsed_time[[1]] <- elapsed_time[[1]][[1]]
used_time_mesh[[1]] <- used_time_mesh[[1]][[1]]
ESS[[1]] <- ESS[[1]][[1]]
CESS[[1]] <- CESS[[1]][[1]]
resampled[[1]] <- resampled[[1]][[1]]
if (record) {
E_nu_j[[1]] <- E_nu_j[[1]][[1]]
chosen[[1]] <- chosen[[1]][[1]]
mesh_terms[[1]] <- mesh_terms[[1]][[1]]
k4_choice[[1]] <- k4_choice[[1]][[1]]
}
precondition_matrices[[1]] <- precondition_matrices[[1]][[1]]
sub_posterior_means[[1]] <- sub_posterior_means[[1]][[1]]
recommended_mesh[[1]] <- recommended_mesh[[1]][[1]]
data_inputs[[1]] <- data_inputs[[1]][[1]]
}
if (record) {
return(list('particles' = particles,
'proposed_samples' = proposed_samples,
'time' = time,
'elapsed_time' = elapsed_time,
'time_mesh' = used_time_mesh,
'ESS' = ESS,
'CESS' = CESS,
'resampled' = resampled,
'E_nu_j' = E_nu_j,
'chosen' = chosen,
'mesh_terms' = mesh_terms,
'k4_choice' = k4_choice,
'precondition_matrices' = precondition_matrices,
'sub_posterior_means' = sub_posterior_means,
'recommended_mesh' = recommended_mesh,
'data_inputs' = data_inputs))
} else {
return(list('particles' = particles,
'proposed_samples' = proposed_samples,
'time' = time,
'elapsed_time' = elapsed_time,
'time_mesh' = used_time_mesh,
'ESS' = ESS,
'CESS' = CESS,
'resampled' = resampled,
'precondition_matrices' = precondition_matrices,
'sub_posterior_means' = sub_posterior_means,
'recommended_mesh' = recommended_mesh,
'data_inputs' = data_inputs))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.