#' @export
vanilla_rho_j_BLR <- function(particle_set,
m,
time_mesh,
dim,
data_split,
prior_means,
prior_variances,
C,
resampling_method = 'multi',
ESS_threshold = 0.5,
cv_location = 'hypercube_centre',
diffusion_estimator,
beta_NB = 10,
gamma_NB_n_points = 2,
local_bounds = TRUE,
seed = NULL,
n_cores = parallel::detectCores(),
cl = NULL,
level = 1,
node = 1,
print_progress_iters = 1000) {
if (!("particle" %in% class(particle_set))) {
stop("vanilla_rho_j_BLR: particle_set must be a \"particle\" object")
} else if (!is.list(data_split) | length(data_split)!=m) {
stop("vanilla_rho_j_BLR: data_split must be a list of length m")
} else if (!all(sapply(data_split, function(sub_posterior) (is.list(sub_posterior) & identical(names(sub_posterior), c("y", "X", "full_data_count", "design_count")))))) {
stop("vanilla_rho_j_BLR: each item in data_split must be a list of length 4 with names \'y\', \'X\', \'full_data_count\', \'design_count\'")
} else if (!is.vector(time_mesh)) {
stop("vanilla_rho_j_BLR: time_mesh must be an ordered vector of length >= 2")
} else if (length(time_mesh) < 2) {
stop("vanilla_rho_j_BLR: time_mesh must be an ordered vector of length >= 2")
} else if (!identical(time_mesh, sort(time_mesh))) {
stop("vanilla_rho_j_BLR: time_mesh must be an ordered vector of length >= 2")
} else if (!all(sapply(1:m, function(i) is.vector(data_split[[i]]$y)))) {
stop("vanilla_rho_j_BLR: for each i in 1:m, data_split[[i]]$y must be a vector")
} else if (!all(sapply(1:m, function(i) is.matrix(data_split[[i]]$X)))) {
stop("vanilla_rho_j_BLR: for each i in 1:m, data_split[[i]]$X must be a matrix")
} else if (!all(sapply(1:m, function(i) ncol(data_split[[i]]$X)==dim))) {
stop("vanilla_rho_j_BLR: for each i in 1:m, ncol(data_split[[i]]$X) must be equal to dim")
} else if (!all(sapply(1:m, function(i) length(data_split[[i]]$y)==nrow(data_split[[i]]$X)))) {
stop("vanilla_rho_j_BLR: for each i in 1:m, length(data_split[[i]]$y) and nrow(data_split[[i]]$X) must be equal")
} else if (!all(sapply(1:m, function(i) is.data.frame(data_split[[i]]$full_data_count)))) {
stop("vanilla_rho_j_BLR: for each i in 1:m, data_split[[i]]$full_data_count must be a data frame")
} else if (!all(sapply(1:m, function(i) is.data.frame(data_split[[i]]$design_count)))) {
stop("vanilla_rho_j_BLR: for each i in 1:m, data_split[[i]]$design_count must be a data frame")
} else if (!is.vector(prior_means) | length(prior_means)!=dim) {
stop("vanilla_rho_j_BLR: prior_means must be vectors of length dim")
} else if (!is.vector(prior_variances) | length(prior_variances)!=dim) {
stop("vanilla_rho_j_BLR: prior_variances must be vectors of length dim")
} else if (!(diffusion_estimator %in% c('Poisson', 'NB'))) {
stop("vanilla_rho_j_BLR: diffusion_estimator must be set to either \'Poisson\' or \'NB\'")
} else if (!any(class(cl)=="cluster") & !is.null(cl)) {
stop("vanilla_rho_j_BLR: cl must be a \"cluster\" object or NULL")
}
if (cv_location == 'mode') {
cv_location <- lapply(1:m, function(c) {
MLE <- obtain_LR_MLE(dim = dim, data = data_split[[c]])
X <- as.matrix(subset(data_split[[c]]$full_data_count, select = -c(y, count)))
list('beta_hat' = MLE,
'grad_log_hat' = log_BLR_gradient(beta = MLE,
y_labels = data_split[[c]]$full_data_count$y,
X = X,
X_beta = as.vector(X %*% MLE),
count = data_split[[c]]$full_data_count$count,
prior_means = prior_means,
prior_variances = prior_variances,
C = C))})
} else if (cv_location == 'hypercube_centre') {
cv_location <- lapply(1:m, function(c) 'hypercube_centre')
} else {
stop("vanilla_rho_j_BLR: cv_location must be either \"mode\" or \"hypercube_centre\"")
}
N <- particle_set$N
# ---------- creating parallel cluster
if (is.null(cl)) {
cl <- parallel::makeCluster(n_cores, setup_strategy = "sequential", outfile = "VBF_BLR_outfile.txt")
parallel::clusterExport(cl, varlist = ls("package:layeredBB"))
close_cluster <- TRUE
} else {
close_cluster <- FALSE
}
parallel::clusterExport(cl, envir = environment(), varlist = ls("package:DCFusion"))
if (!is.null(seed)) {
parallel::clusterSetRNGStream(cl, iseed = seed)
}
max_samples_per_core <- ceiling(N/n_cores)
split_indices <- split(1:N, ceiling(seq_along(1:N)/max_samples_per_core))
counts <- c('full_data_count', 'design_count')
ESS <- c(particle_set$ESS[1], rep(NA, length(time_mesh)-1))
CESS <- c(particle_set$CESS[1], rep(NA, length(time_mesh)-1))
resampled <- rep(FALSE, length(time_mesh))
if (is.null(print_progress_iters)) {
print_progress_iters <- split_N
}
# iterative proposals
for (j in 2:length(time_mesh)) {
# ----------- resample particle_set (only resample if ESS < N*ESS_threshold)
if (particle_set$ESS < N*ESS_threshold) {
resampled[j-1] <- TRUE
particle_set <- resample_particle_x_samples(N = N,
particle_set = particle_set,
multivariate = TRUE,
step = j-1,
resampling_method = resampling_method,
seed = seed)
} else {
resampled[j-1] <- FALSE
}
# split the x samples from the previous time marginal (and their means) into approximately equal lists
split_x_samples <- lapply(split_indices, function(indices) particle_set$x_samples[indices])
split_x_means <- lapply(split_indices, function(indices) particle_set$x_means[indices,,drop = FALSE])
V <- construct_V_vanilla(s = time_mesh[j-1],
t = time_mesh[j],
end_time = time_mesh[length(time_mesh)],
C = m,
d = dim)
rho_j_weighted_samples <- parallel::parLapply(cl, X = 1:length(split_indices), fun = function(core) {
split_N <- length(split_indices[[core]])
x_mean_j <- matrix(data = NA, nrow = split_N, ncol = dim)
log_rho_j <- rep(0, split_N)
x_j <- lapply(1:split_N, function(i) {
M <- construct_M_vanilla(s = time_mesh[j-1],
t = time_mesh[j],
end_time = time_mesh[length(time_mesh)],
C = m,
d = dim,
sub_posterior_samples = split_x_samples[[core]][[i]],
sub_posterior_mean = split_x_means[[core]][i,])$M
if (j!=length(time_mesh)) {
return(matrix(mvrnormArma(N = 1, mu = M, Sigma = V), nrow = m, ncol = dim, byrow = TRUE))
} else {
return(matrix(mvtnorm::rmvnorm(n = 1, mean = M, sigma = V), nrow = m, ncol = dim, byrow = TRUE))
}
})
cat('Level:', level, '|| Step:', j, '/', length(time_mesh), '|| Node:', node,
'|| Core:', core, '|| START \n', file = 'vanilla_rho_j_BLR_progress.txt', append = T)
for (i in 1:split_N) {
x_mean_j[i,] <- weighted_mean_multivariate(matrix = x_j[[i]],
weights = rep(list(diag(1, dim)), m),
inverse_sum_weights = inverse_sum_matrices(rep(list(diag(1, dim)), m)))
log_rho_j[i] <- sum(sapply(1:m, function(c) {
tryCatch(expr = ea_BLR_DL_PT(dim = dim,
x0 = as.vector(split_x_samples[[core]][[i]][c,]),
y = as.vector(x_j[[i]][c,]),
s = time_mesh[j-1],
t = time_mesh[j],
data = data_split[[c]][counts],
prior_means = prior_means,
prior_variances = prior_variances,
C = C,
precondition_mat = diag(1, dim),
transform_mats = list('to_Z' = diag(1, dim),
'to_X' = diag(1, dim)),
cv_location = cv_location[[c]],
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
local_bounds = local_bounds,
logarithm = TRUE),
error = function(e) {
ea_BLR_DL_PT(dim = dim,
x0 = as.vector(split_x_samples[[core]][[i]][c,]),
y = as.vector(x_j[[i]][c,]),
s = time_mesh[j-1],
t = time_mesh[j],
data = data_split[[c]][counts],
prior_means = prior_means,
prior_variances = prior_variances,
C = C,
precondition_mat = diag(1, dim),
transform_mats = list('to_Z' = diag(1, dim),
'to_X' = diag(1, dim)),
cv_location = cv_location[[c]],
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
local_bounds = FALSE,
logarithm = TRUE)})
}))
if (i%%print_progress_iters==0) {
cat('Level:', level, '|| Step:', j, '/', length(time_mesh),
'|| Node:', node, '|| Core:', core, '||', i, '/', split_N, '\n',
file = 'vanilla_rho_j_BLR_progress.txt', append = T)
}
}
cat('Level:', level, '|| Step:', j, '|| Node:', node, '|| Core:', core, '||', split_N, '/',
split_N, '\n', file = 'vanilla_rho_j_BLR_progress.txt', append = T)
return(list('x_j' = x_j, 'x_mean_j' = x_mean_j, 'log_rho_j' = log_rho_j))
})
# ---------- update particle set
# update the weights and return updated particle set
particle_set$x_samples <- unlist(lapply(1:length(split_indices), function(i) {
rho_j_weighted_samples[[i]]$x_j}), recursive = FALSE)
particle_set$x_means <- do.call(rbind, lapply(1:length(split_indices), function(i) {
rho_j_weighted_samples[[i]]$x_mean_j}))
# update weight and normalise
log_rho_j <- unlist(lapply(1:length(split_indices), function(i) {
rho_j_weighted_samples[[i]]$log_rho_j}))
norm_weights <- particle_ESS(log_weights = particle_set$log_weights + log_rho_j)
particle_set$log_weights <- norm_weights$log_weights
particle_set$normalised_weights <- norm_weights$normalised_weights
particle_set$ESS <- norm_weights$ESS
ESS[j] <- particle_set$ESS
# calculate the conditional ESS (i.e. the 1/sum(inc_change^2))
# where inc_change is the incremental change in weight (= log_rho_j)
particle_set$CESS[j] <- particle_ESS(log_weights = log_rho_j)$ESS
CESS[j] <- particle_set$CESS[j]
}
if (close_cluster) {
parallel::stopCluster(cl)
}
# set the y samples as the first element of each of the x_samples
proposed_samples <- t(sapply(1:N, function(i) particle_set$x_samples[[i]][1,]))
particle_set$y_samples <- proposed_samples
# ----------- resample particle_set (only resample if ESS < N*ESS_threshold)
if (particle_set$ESS < N*ESS_threshold) {
resampled[particle_set$number_of_steps] <- TRUE
particle_set <- resample_particle_y_samples(N = N,
particle_set = particle_set,
multivariate = TRUE,
resampling_method = resampling_method,
seed = seed)
} else {
resampled[particle_set$number_of_steps] <- FALSE
}
return(list('particle_set' = particle_set,
'proposed_samples' = proposed_samples,
'ESS' = ESS,
'CESS' = CESS,
'resampled' = resampled))
}
#' @export
parallel_vanilla_BF_SMC_BLR <- function(particles_to_fuse,
N,
m,
time_mesh,
dim,
data_split,
prior_means,
prior_variances,
C,
resampling_method = 'multi',
ESS_threshold = 0.5,
cv_location = 'hypercube_centre',
diffusion_estimator = 'Poisson',
beta_NB = 10,
gamma_NB_n_points = 2,
local_bounds = TRUE,
seed = NULL,
n_cores = parallel::detectCores(),
cl = NULL,
level = 1,
node = 1,
print_progress_iters = 1000) {
if (!is.list(particles_to_fuse) | (length(particles_to_fuse)!=m)) {
stop("parallel_vanilla_BF_SMC_BLR: particles_to_fuse must be a list of length m")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) ("particle" %in% class(sub_posterior))))) {
stop("parallel_vanilla_BF_SMC_BLR: particles in particles_to_fuse must be \"particle\" objects")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) is.matrix(sub_posterior$y_samples)))) {
stop("parallel_vanilla_BF_SMC_BLR: the particles' samples for y should all be matrices")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) ncol(sub_posterior$y_samples)==dim))) {
stop("parallel_vanilla_BF_SMC_BLR: the particles' samples for y should all be matrices with dim columns")
} else if (!is.vector(time_mesh)) {
stop("parallel_vanilla_BF_SMC_BLR: time_mesh must be an ordered vector of length >= 2")
} else if (length(time_mesh) < 2) {
stop("parallel_vanilla_BF_SMC_BLR: time_mesh must be an ordered vector of length >= 2")
} else if (!identical(time_mesh, sort(time_mesh))) {
stop("parallel_vanilla_BF_SMC_BLR: time_mesh must be an ordered vector of length >= 2")
} else if (!is.list(data_split) | length(data_split)!=m) {
stop("parallel_vanilla_BF_SMC_BLR: data_split must be a list of length m")
} else if (!all(sapply(data_split, function(sub_posterior) (is.list(sub_posterior) & identical(names(sub_posterior), c("y", "X", "full_data_count", "design_count")))))) {
stop("parallel_vanilla_BF_SMC_BLR: each item in data_split must be a list of length 4 with names \'y\', \'X\', \'full_data_count\', \'design_count\'")
} else if (!all(sapply(1:m, function(i) is.vector(data_split[[i]]$y)))) {
stop("parallel_vanilla_BF_SMC_BLR: for each i in 1:m, data_split[[i]]$y must be a vector")
} else if (!all(sapply(1:m, function(i) is.matrix(data_split[[i]]$X)))) {
stop("parallel_vanilla_BF_SMC_BLR: for each i in 1:m, data_split[[i]]$X must be a matrix")
} else if (!all(sapply(1:m, function(i) ncol(data_split[[i]]$X)==dim))) {
stop("parallel_vanilla_BF_SMC_BLR: for each i in 1:m, data_split[[i]]$X must be a matrix with dim columns")
} else if (!all(sapply(1:m, function(i) length(data_split[[i]]$y)==nrow(data_split[[i]]$X)))) {
stop("parallel_vanilla_BF_SMC_BLR: for each i in 1:m, length(data_split[[i]]$y) and nrow(data_split[[i]]$X) must be equal")
} else if (!all(sapply(1:m, function(i) is.data.frame(data_split[[i]]$full_data_count)))) {
stop("parallel_vanilla_BF_SMC_BLR: for each i in 1:m, data_split[[i]]$full_data_count must be a data frame")
} else if (!all(sapply(1:m, function(i) is.data.frame(data_split[[i]]$design_count)))) {
stop("parallel_vanilla_BF_SMC_BLR: for each i in 1:m, data_split[[i]]$design_count must be a data frame")
} else if (!is.vector(prior_means) | length(prior_means)!=dim) {
stop("parallel_vanilla_BF_SMC_BLR: prior_means must be vectors of length dim")
} else if (!is.vector(prior_variances) | length(prior_variances)!=dim) {
stop("parallel_vanilla_BF_SMC_BLR: prior_variances must be vectors of length dim")
} else if (!(diffusion_estimator %in% c('Poisson', 'NB'))) {
stop("parallel_vanilla_BF_SMC_BLR: diffusion_estimator must be set to either \'Poisson\' or \'NB\'")
} else if ((ESS_threshold < 0) | (ESS_threshold > 1)) {
stop("parallel_vanilla_BF_SMC_BLR: ESS_threshold must be between 0 and 1")
} else if ((cv_location != 'mode') & (cv_location != 'hypercube_centre')) {
stop("parallel_vanilla_BF_SMC_BLR: cv_location must be either \"mode\" or \"hypercube_centre\"")
} else if (!any(class(cl)=="cluster") & !is.null(cl)) {
stop("parallel_vanilla_BF_SMC_BLR: cl must be a \"cluster\" object or NULL")
}
# set a seed if one is supplied
if (!is.null(seed)) {
set.seed(seed)
}
# start time recording
pcm <- proc.time()
# ---------- first importance sampling step
particles <- rho_IS_multivariate(particles_to_fuse = particles_to_fuse,
dim = dim,
N = N,
m = m,
time = time_mesh[length(time_mesh)],
inv_precondition_matrices = rep(list(diag(1, dim)), m),
inverse_sum_inv_precondition_matrices = inverse_sum_matrices(rep(list(diag(1, dim)), m)),
number_of_steps = length(time_mesh),
time_mesh = time_mesh,
resampling_method = resampling_method,
seed = seed,
n_cores = n_cores,
cl = cl)
# ---------- iterative steps
rho_j <- vanilla_rho_j_BLR(particle_set = particles,
m = m,
time_mesh = time_mesh,
dim = dim,
data_split = data_split,
prior_means = prior_means,
prior_variances = prior_variances,
C = C,
resampling_method = resampling_method,
ESS_threshold = ESS_threshold,
cv_location = cv_location,
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
local_bounds = local_bounds,
seed = seed,
n_cores = n_cores,
cl = cl,
level = level,
node = node,
print_progress_iters = print_progress_iters)
return(list('particles' = rho_j$particle_set,
'proposed_samples' = rho_j$proposed_samples,
'time' = (proc.time()-pcm)['elapsed'],
'ESS' = rho_j$ESS,
'CESS' = rho_j$CESS,
'resampled' = rho_j$resampled,
'combined_data' = combine_data(list_of_data = data_split, dim = dim)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.