Description Usage Arguments Examples
This function allows you to learn a directed graph from a dataset using the Adaptively Restricted Greedy Equivalence Search (ARGES) algorithm.
1 2 3 4 5 6 7 8 9 10 11 12 13 |
df |
Dataset. |
whitelist |
A data frame with two columns, containing a set of arcs to be included in the graph (optional). |
blacklist |
A data frame with two columns, containing a set of arcs not to be included in the graph (optional). |
indep.test |
Conditional independence test to be used (pcalg implementation). Default: pcalg::gaussCItest |
alpha |
Target nominal type I error rate. Default: 0.01 |
max.sx |
Maximum allowed size of the conditioning sets. |
adaptive |
Whether constraints should be adapted to newly detected v-structures or unshielded triples: 'none', 'vstructures', or 'triples'. Default: 'none' |
maxDegree |
Parameter used to limit the vertex degree of the estimated graph. Default: integer(0) |
m |
Size of training set (optional). Default: nrow(df)/2 |
to |
Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional). |
seed |
Seed used for random selection. Default: NULL |
1 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.