arges: Adaptively Restricted Greedy Equivalence Search Algorithm...

Description Usage Arguments Examples

View source: R/algorithms.R

Description

This function allows you to learn a directed graph from a dataset using the Adaptively Restricted Greedy Equivalence Search (ARGES) algorithm.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
arges(
  df,
  whitelist = NULL,
  blacklist = NULL,
  indep.test = pcalg::gaussCItest,
  alpha = 0.01,
  max.sx = Inf,
  adaptive = c("none", "vstructures", "triples"),
  maxDegree = integer(0),
  m = NULL,
  to = c("igraph", "adjacency", "edges", "graph", "bnlearn"),
  seed = sample(1:10^6, 1)
)

Arguments

df

Dataset.

whitelist

A data frame with two columns, containing a set of arcs to be included in the graph (optional).

blacklist

A data frame with two columns, containing a set of arcs not to be included in the graph (optional).

indep.test

Conditional independence test to be used (pcalg implementation). Default: pcalg::gaussCItest

alpha

Target nominal type I error rate. Default: 0.01

max.sx

Maximum allowed size of the conditioning sets.

adaptive

Whether constraints should be adapted to newly detected v-structures or unshielded triples: 'none', 'vstructures', or 'triples'. Default: 'none'

maxDegree

Parameter used to limit the vertex degree of the estimated graph. Default: integer(0)

m

Size of training set (optional). Default: nrow(df)/2

to

Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional).

seed

Seed used for random selection. Default: NULL

Examples

1
g <- arges(df)

rlebron-bioinfo/gnlearn documentation built on July 25, 2020, 12:38 p.m.