Description Usage Arguments Examples
This function allows you to learn a directed graph from a dataset using Parents & Children algorithms.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | boot.parents.children(
df,
whitelist = NULL,
blacklist = NULL,
test = ci.tests,
alpha = 0.01,
B = NULL,
max.sx = NULL,
version = c("mmpc", "si.hiton.pc", "hpc"),
R = 200,
m = NULL,
threshold = 0.5,
to = c("igraph", "adjacency", "edges", "graph", "bnlearn"),
cluster = parallel::detectCores(),
seed = sample(1:10^6, 1)
)
|
df |
Dataset. |
whitelist |
A data frame with two columns, containing a set of arcs to be included in the graph (optional). |
blacklist |
A data frame with two columns, containing a set of arcs not to be included in the graph (optional). |
test |
Conditional independence test to be used: 'cor', 'mc-cor', 'smc-cor', 'zf', 'mc-zf', 'smc-zf', 'mi-g', 'mc-mi-g', 'smc-mi-g', or 'mi-g-sh'. Default: 'cor' |
alpha |
Target nominal type I error rate. Default: 0.01 |
B |
Number of permutations considered for each permutation test. |
max.sx |
Maximum allowed size of the conditioning sets. |
version |
Algorithm version: 'mmpc', 'si.hiton.pc', or 'hpc'. Default: 'mmpc' |
R |
Number of bootstrap replicates (optional). Default: 200 |
m |
Size of training set (optional). Default: nrow(df)/2 |
threshold |
Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5 |
to |
Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional). |
cluster |
A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores() |
seed |
Seed used for random selection. Default: NULL |
1 2 3 | obj <- boot.parents.children(df)
avg.g <- obj$average
g.rep <- obj$replicates
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.