boot.iamb: Incremental Association Algorithm (IAMB) With Bootstrapping

Description Usage Arguments Examples

View source: R/algorithms.R

Description

This function allows you to learn a directed graph from a dataset using the Incremental Association algorithm.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
boot.iamb(
  df,
  whitelist = NULL,
  blacklist = NULL,
  test = ci.tests,
  alpha = 0.01,
  B = NULL,
  max.sx = NULL,
  version = c("iamb", "fast.iamb", "inter.iamb", "iamb.fdr"),
  R = 200,
  m = NULL,
  threshold = 0.5,
  to = c("igraph", "adjacency", "edges", "graph", "bnlearn"),
  cluster = parallel::detectCores(),
  seed = sample(1:10^6, 1)
)

Arguments

df

Dataset.

whitelist

A data frame with two columns, containing a set of arcs to be included in the graph (optional).

blacklist

A data frame with two columns, containing a set of arcs not to be included in the graph (optional).

test

Conditional independence test to be used: 'cor', 'mc-cor', 'smc-cor', 'zf', 'mc-zf', 'smc-zf', 'mi-g', 'mc-mi-g', 'smc-mi-g', or 'mi-g-sh'. Default: 'cor'

alpha

Target nominal type I error rate. Default: 0.01

B

Number of permutations considered for each permutation test.

max.sx

Maximum allowed size of the conditioning sets.

version

Algorithm version: 'iamb', 'fast.iamb', 'inter.iamb', or 'iamb.fdr'. Default: 'iamb'

R

Number of bootstrap replicates (optional). Default: 200

m

Size of training set (optional). Default: nrow(df)/2

threshold

Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5

to

Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional).

cluster

A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores()

seed

Seed used for random selection. Default: NULL

Examples

1
2
3
obj <- boot.iamb(df)
avg.g <- obj$average
g.rep <- obj$replicates

rlebron-bioinfo/gnlearn documentation built on July 25, 2020, 12:38 p.m.