Description Usage Arguments Examples
This function allows you to learn a directed graph from a dataset using the Fast Causal Inference algorithm (stable version).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | boot.fci(
df,
whitelist = NULL,
blacklist = NULL,
indep.test = pcalg::gaussCItest,
alpha = 0.01,
max.sx = Inf,
pdsep.max = Inf,
conservative = FALSE,
maj.rule = FALSE,
version = c("fci", "rfci", "fci.plus"),
type = c("normal", "anytime", "adaptive"),
rules = rep(TRUE, 10),
doPdsep = TRUE,
biCC = FALSE,
R = 200,
m = NULL,
threshold = 0.5,
to = c("igraph", "adjacency", "edges", "graph", "bnlearn"),
cluster = parallel::detectCores(),
seed = sample(1:10^6, 1)
)
|
df |
Dataset. |
whitelist |
A data frame with two columns, containing a set of arcs to be included in the graph (optional). |
blacklist |
A data frame with two columns, containing a set of arcs not to be included in the graph (optional). |
indep.test |
Conditional independence test to be used (pcalg implementation). Default: pcalg::gaussCItest |
alpha |
Target nominal type I error rate. Default: 0.01 |
max.sx |
Maximum allowed size of the conditioning sets. |
pdsep.max |
Maximum size of Possible-D-SEP for which subsets are considered as conditioning sets in the conditional independence tests. |
conservative |
Whether or not the conservative PC is used (pcalg implementation). Default: FALSE |
maj.rule |
Whether or not the triples shall be checked for ambiguity using a majority rule idea, which is less strict than the conservative PC algorithm (pcalg implementation). Default: FALSE |
version |
Version of FCI algorithm to be used: 'fci', 'rfci', or 'fci.plus'. Default: 'fci' |
type |
Type of FCI algorithm to be used: 'normal', 'anytime', or 'adaptive'. Default: 'normal' |
rules |
Logical vector of length 10 indicating which rules should be used when directing edges. Default: rep(TRUE,10) |
doPdsep |
If FALSE, Possible-D-SEP is not computed, so that the algorithm simplifies to the Modified PC algorithm of Spirtes, Glymour and Scheines (2000, p.84). Default: TRUE |
biCC |
If TRUE, only nodes on paths between nodes x and y are considered to be in Possible-D-SEP(x) when testing independence between x and y. Default: TRUE |
R |
Number of bootstrap replicates (optional). Default: 200 |
m |
Size of training set (optional). Default: nrow(df)/2 |
threshold |
Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5 |
to |
Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional). |
cluster |
A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores() |
seed |
Seed used for random selection. Default: NULL |
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.