Description Usage Arguments Examples
This function allows you to learn a directed graph from a dataset using the Greedy Equivalence Search (GES) algorithm of Chickering (2002).
1 2 3 4 5 6 7 8 9 10 11 12 |
df |
Dataset. |
blacklist |
A data frame with two columns, containing a set of arcs not to be included in the graph (optional). |
adaptive |
Whether constraints should be adapted to newly detected v-structures or unshielded triples: 'none', 'vstructures', or 'triples'. Default: 'none' |
maxDegree |
Parameter used to limit the vertex degree of the estimated graph. Default: integer(0) |
R |
Number of bootstrap replicates (optional). Default: 200 |
m |
Size of training set (optional). Default: nrow(df)/2 |
threshold |
Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5 |
to |
Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional). |
cluster |
A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores() |
seed |
Seed used for random selection. Default: NULL |
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.