Description Usage Arguments Examples
This function allows you to learn a directed graph from a dataset using the GENIE3 algorithm.
1 2 3 4 5 6 7 8 9 10 11 12 13 | boot.genie3(
df,
tree.method = c("rf", "et"),
K = "sqrt",
n.trees = 1000,
min.weight = 0.1,
R = 200,
m = NULL,
threshold = 0.5,
to = c("igraph", "adjacency", "edges", "graph", "bnlearn"),
cluster = parallel::detectCores(),
seed = sample(1:10^6, 1)
)
|
df |
Dataset. |
tree.method |
Random Forest ('rf') or Extra-Trees ('et'). Default: 'rf' |
K |
Number of candidate regulators that are randomly selected at each tree node for the best split determination. Default: 'sqrt' (square root of the number of genes) |
n.trees |
Number of trees that are grown per ensemble. Default: 1000 |
min.weight |
Minimum absolute value considered in the adjacency matrix. Lower values will be replaced by zero. Default: 0.1 |
R |
Number of bootstrap replicates (optional). Default: 200 |
m |
Size of training set (optional). Default: nrow(df)/2 |
threshold |
Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5 |
to |
Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional). |
cluster |
A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores() |
seed |
Seed used for random selection. Default: NULL |
1 2 3 | obj <- boot.genie3(df)
avg.g <- obj$average
g.rep <- obj$replicates
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.