Description Usage Arguments Examples
This function allows you to learn a directed graph from a dataset using the Grow-Shrink algorithm.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
df |
Dataset. |
whitelist |
A data frame with two columns, containing a set of arcs to be included in the graph (optional). |
blacklist |
A data frame with two columns, containing a set of arcs not to be included in the graph (optional). |
test |
Conditional independence test to be used: 'cor', 'mc-cor', 'smc-cor', 'zf', 'mc-zf', 'smc-zf', 'mi-g', 'mc-mi-g', 'smc-mi-g', or 'mi-g-sh'. Default: 'cor' |
alpha |
Target nominal type I error rate. Default: 0.01 |
B |
Number of permutations considered for each permutation test. |
max.sx |
Maximum allowed size of the conditioning sets. |
R |
Number of bootstrap replicates (optional). Default: 200 |
m |
Size of training set (optional). Default: nrow(df)/2 |
threshold |
Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5 |
to |
Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional). |
cluster |
A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores() |
seed |
Seed used for random selection. Default: NULL |
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.