Description Usage Arguments Examples
This function allows you to learn a directed graph from a dataset using the Tabu Search algorithm.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 
| df | Dataset. | 
| start | Preseeded directed acyclic graph used to initialize the algorithm (optional). | 
| whitelist | A data frame with two columns, containing a set of arcs to be included in the graph (optional). | 
| blacklist | A data frame with two columns, containing a set of arcs not to be included in the graph (optional). | 
| score | Score to be used: 'pred-loglik-g', 'loglik-g', 'aic-g', 'bic-g', or 'bge'. Default: 'pred-loglik-g' | 
| tabu | Length of the tabu list. Default: 10 | 
| max.tabu | Iterations tabu search can perform without improving the best score. Default: tabu (10) | 
| max.iter | Maximum number of iterations. Default: Inf | 
| maxp | Maximum number of parents for a node. Default: Inf | 
| R | Number of bootstrap replicates (optional). Default: 200 | 
| m | Size of training set (optional). Default: nrow(df)/2 | 
| threshold | Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5 | 
| to | Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional). | 
| cluster | A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores() | 
| seed | Seed used for random selection. Default: NULL | 
| 1 2 3 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.