Description Usage Arguments Examples
This function allows you to learn a directed graph from a dataset using the Hill-Climbing algorithm.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
df |
Dataset. |
start |
Preseeded directed acyclic graph used to initialize the algorithm (optional). |
whitelist |
A data frame with two columns, containing a set of arcs to be included in the graph (optional). |
blacklist |
A data frame with two columns, containing a set of arcs not to be included in the graph (optional). |
score |
Score to be used: 'pred-loglik-g', 'loglik-g', 'aic-g', 'bic-g', or 'bge'. Default: 'pred-loglik-g' |
restart |
Number of random restarts. Default: 0 |
perturb |
Number of attempts to randomly insert/remove/reverse an arc on every random restart. Default: 1 |
max.iter |
Maximum number of iterations. Default: Inf |
maxp |
Maximum number of parents for a node. Default: Inf |
R |
Number of bootstrap replicates (optional). Default: 200 |
m |
Size of training set (optional). Default: nrow(df)/2 |
threshold |
Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5 |
to |
Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn') (optional). |
cluster |
A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores() |
seed |
Seed used for random selection. Default: NULL |
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.