R/ui.R

#' @include zzz.R
#'
#' @importFrom DT DTOutput
#' @importFrom htmltools div h3 h4 HTML includeCSS p tagList tags
#' @importFrom shinyjs disabled useShinyjs
#' @importFrom shiny actionButton checkboxInput column downloadButton fileInput
#' fluidRow htmlOutput icon numericInput plotOutput radioButtons selectizeInput
#' tableOutput textOutput textAreaInput uiOutput verbatimTextOutput hoverOpts
#' checkboxGroupInput
#' @importFrom shinyBS bsButton bsPopover bsTooltip
#' @importFrom plotly plotlyOutput renderPlotly toWebGL
#' @importFrom shinydashboard box dashboardBody dashboardHeader dashboardSidebar
#' dashboardPage menuItem sidebarMenu sidebarMenuOutput tabItem tabItems
#' valueBoxOutput
#'
NULL

AzimuthUI <- tagList(
  useShinyjs(),
  includeCSS(path = GetCSS()),
  dashboardPage(
    dashboardHeader(title = app.title),
    dashboardSidebar(
      fileInput(
        inputId = 'file',
        label = p(
          'File Upload',
          bsButton(
            'q1',
            label = '',
            icon = icon(name = 'question'),
            style = 'info',
            size = 'extra-small'
          )
        ),
        accept = c('.h5', '.h5ad', '.h5seurat', '.rds')
      ),
      bsPopover(
        id = 'q1',
        title = 'Supported file types',
        content = paste(
          '10x Genomics H5',
          'Seurat object (RDS)',
          'H5AD',
          'H5Seurat',
          'Matrix/matrix/data.frame (RDS)',
          sep = '; '
        ),
        placement = 'right',
        trigger = 'focus',
        options = list(container = 'body')
      ),
      div(
        id = "demobuttons"
      ),
      htmlOutput(outputId = 'message', inline = FALSE),
      sidebarMenu(
        menuItem(
          text = 'Welcome',
          tabName = 'tab_welcome',
          icon = icon(name = 'map'),
          selected = TRUE
        ),
        sidebarMenuOutput(outputId = 'menu1'),
        sidebarMenuOutput(outputId = 'menu2'),
        sidebarMenuOutput(outputId = 'menu3')
      ),
      htmlOutput(outputId = 'containerid', inline = FALSE)
    ),
    dashboardBody(
      tags$head(
        tags$style(
          HTML(".content-wrapper { overflow: auto }
          .wrapper {height: auto !important; position:relative; overflow-x:hidden; overflow-y:hidden}
          .shiny-notification {
            position: fixed;
            font-size: 15px;
            left: calc(50% - 100px);
            top: calc(90%);
            width: 350px;
          }
          .shiny-notification-close {
            display: none;
          }
          .small-box {height: 110px}
            "
          )
        )
      ),
      tabItems(
        # Welcome tab
        tabItem(
          tabName = 'tab_welcome',
          div(
            fluidRow(
              box(
                htmlOutput(outputId = 'welcomebox'),
                htmlOutput(outputId = 'refdescriptor'),
                width=12
              ),
              width=12
            ),
            fluidRow(
              div(
                style = "position:relative",
                plotOutput(
                  outputId = 'refdim_intro',
                  hover = hoverOpts(
                    id = "refdim_intro_hover_location",
                    delay = 5,
                    delayType = "debounce",
                    nullOutside = TRUE
                  ),
                  height='1000px'
                ),
                uiOutput("refdim_intro_hover_box")
              ),
              width = 12,
              height='1000px'
            ),
          )
        ),
        # Preprocessing + QC Tab
        tabItem(
          tabName = 'tab_preproc',
          fluidRow(
            box(
              title = p(
                'QC Filters',
                bsButton(
                  inputId = 'q2',
                  label = '',
                  icon = icon(name = 'question'),
                  style = 'info',
                  size = 'extra-small'
                )
              ),
              div(
                id = 'ncount',
                numericInput(
                  inputId = 'num.ncountmin',
                  label = NULL,
                  value = 0,
                  width = '90%'
                ),
                numericInput(
                  inputId = 'num.ncountmax',
                  label = NULL,
                  value = 0,
                  width = '90%'
                )
              ),
              div(
                id = 'nfeature',
                numericInput(
                  inputId = 'num.nfeaturemin',
                  label = NULL,
                  value = 0,
                  width = '90%'
                ),
                numericInput(
                  inputId = 'num.nfeaturemax',
                  label = NULL,
                  value = 0,
                  width = '90%'
                )
              ),
              div(
                id = 'pctmt',
                numericInput(
                  inputId = 'minmt',
                  label = NULL,
                  value = 0,
                  width = '90%'
                ),
                numericInput(
                  'maxmt',
                  label = NULL,
                  value = 0,
                  width = '90%'
                )
              ),
              textOutput(outputId = 'text.cellsremain'),
              div(
                id = 'xferopts',
                h4(
                  'Transfer Options',
                  bsButton(
                    inputId = 'xferinput',
                    label = '',
                    icon = icon(name = 'question'),
                    style = 'info',
                    size = 'extra-small'
                  )
                ),
                bsPopover(
                  id = 'xferinput',
                  title = 'Transfer Options',
                  content = 'Select the meta.data fields to transfer from the reference',
                  placement = 'right',
                  trigger = 'focus',
                  options = list(container = 'body')
                ),
                selectizeInput(
                  inputId = 'metadataxfer',
                  label = 'Reference Metadata to Transfer',
                  choices = '',
                  multiple = TRUE
                )
              ),
              disabled(actionButton(
                inputId = 'map',
                label = 'Map cells to reference'
              )),
              width = 4
            ),
            bsPopover(
              id = 'q2',
              title = 'QC Filters',
              content = paste(
                'Select a minimum and maximum value for nCount (number of molecules)',
                'nFeature (number of genes expressed)',
                'and mitochondrial percentage (if applicable)',
                sep = ', '
              ),
              placement = 'right',
              trigger = 'focus',
              options = list(container = 'body')
            ),
            box(
              checkboxGroupInput(inputId = "check.qc", label = NULL, choiceNames = c("Log-scale Y-axis", "Hide points"), choiceValues = c("qcscale", "qcpoints"), inline = TRUE),
              plotOutput(outputId = 'plot.qc'),
              tableOutput(outputId = 'table.qc'),
              width = 8
            ),
          ),
        uiOutput(outputId = "all_qc"),
        ),
        tabItem(
          tabName = 'tab_cell',
          div(
            id = "topdim",
            width = 12
          ),
          div(
            id = "bottomdim",
            width = 12
          ),
          box(
            title = p(
              'Metadata table',
              bsButton(
                inputId = 'q5',
                label = '',
                icon = icon(name = 'question'),
                style = 'info',
                size = 'extra-small'
              )
            ),
            bsPopover(
              id = 'q5',
              title = 'Metadata table',
              content = paste(
                'A (usually) 2D table where each dimension represents a query metadata field, ',
                'thus revealing the breakdown of any one query attribute when grouping by another. ',
                'By default, a 1D table is produced where one dimension has constant value (\\"query\\") and ',
                'the other is a predicted class (\\"predicted.XXX\\"), thus showing the overall breakdown of the ',
                'predicted class.'),
              placement = 'right',
              trigger = 'focus',
              options = list(container = 'body')
            ),
            div(
              style = 'display: inline-block; vertical-align: top; width: 25%',
              selectizeInput(
                inputId = 'metarow',
                label = 'Table rows',
                choices = ''
              )
            ),
            div(
              style = 'display: inline-block; vertical-align: top; width: 25%',
              selectizeInput(
                inputId = 'metacol',
                label = 'Table columns',
                choices = ''
              )
            ),
            div(
              style = 'display: inline-block; vertical-align: top; width: 50%',
              radioButtons(
                inputId = 'radio.pct',
                label = NULL,
                choices = c('Percentage','Frequency'),
                inline = TRUE
              )
            ),
            div(
              id = 'tablemetadata'
            ),
            width = 12,
            height = 'auto'
          )
        ),
        # Motif tab
        tabItem(
          tags$head(tags$style(HTML(".selectize-dropdown .optgroup-header { font-weight: bold; font-size: 13px; color: black; background: #f6f6f6}"))),
          tabName = 'tab_motif',
          # box(
          #   title = 'Motif Plots',
          #   div(
          #     id = 'motifinput',
          #     class = 'thirds',
          #     selectizeInput(
          #       inputId = 'motif.feature',
          #       label = 'Motif',
          #       choices = ''
          #     )
          #   ),
          #   div(
          #     id = 'continput.motif',
          #     class = 'thirds',
          #     selectizeInput(
          #       inputId = 'metadata.cont.motif',
          #       label = 'Prediction Scores and Metadata',
          #       choices = ''
          #     )
          #   ),
          #   plotOutput(outputId = 'motifdim'),
          #   selectizeInput(
          #     inputId = 'metagroup.motif',
          #     label = 'Metadata to group by',
          #     choices = '',
          #     width = '25%'
          #   ),
          #   checkboxInput(inputId = 'check.featpoints', label = 'Hide points'),
          #   plotOutput(outputId = 'motifvln'),
          #   width = 12
          # ),
          box(
            title = p(
              'Predicted cell type cluster motifs',
              bsButton(
                inputId = 'q6',
                label = '',
                icon = icon(name = 'question'),
                style = 'info',
                size = 'extra-small'
              )
            ),
            bsPopover(
              id = 'q6',
              title = 'Motif Analysis Table',
              content = paste(
                'Only available for clusters with at least 15 cells.',
                paste(
                  # 'avg_diff: log fold-change between cells in the cluster specified and other cells',
                  'padj: Benjamini-Hochberg adjusted p value',
                  'pct_in: percent of cells in the cluster with nonzero feature value',
                  'pct_out: percent of cells out of the cluster with nonzero feature value',
                  sep = '; '
                )
              ),
              placement = 'right',
              trigger = 'focus',
              options = list(container = 'body')
            ),
            div(
              id = 'markerclustersgroupinput.motif',
              class = 'halves',
              selectizeInput(
                inputId = 'markerclustersgroup.motif',
                label = 'Metadata group',
                choices = ''
              )
            ),
            div(
              id = 'markerclustersgroupinput.motif',
              class = 'halves',
              selectizeInput(
                inputId = 'markerclusters.motif',
                label = 'Predicted cell type',
                choices = ''
              )
            ),
            div(
              id = 'motiftable',
              class = 'full',
              h3('Motifs'),
              DTOutput(outputId = 'motifs')
            ),
            width = 12
          )
        ),
        # Feature tab
        tabItem(
          tags$head(tags$style(HTML(".selectize-dropdown .optgroup-header { font-weight: bold; font-size: 13px; color: black; background: #f6f6f6}"))),
          tabName = 'tab_feature',
          box(
            title = 'Gene Activity Scores',
            div(
              id = 'featureinput',
              class = 'thirds',
              selectizeInput(
                inputId = 'feature',
                label = 'Feature',
                choices = ''
              )
            ),
            div(
              id = 'imputedinput',
              class = 'thirds',
              selectizeInput(
                inputId = 'adtfeature',
                label = 'Imputed protein',
                choices = ''
              )
            ),
            div(
              id = 'continput',
              class = 'thirds',
              selectizeInput(
                inputId = 'metadata.cont',
                label = 'Prediction Scores and Metadata',
                choices = ''
              )
            ),
            plotOutput(outputId = 'edim'),
            selectizeInput(
              inputId = 'metagroup',
              label = 'Metadata to group by',
              choices = '',
              width = '25%'
            ),
            checkboxInput(inputId = 'check.featpoints', label = 'Hide points'),
            plotOutput(outputId = 'evln'),
            width = 12
          ),
          box(
            title = p(
              'Predicted cell type cluster biomarkers',
              bsButton(
                inputId = 'q3',
                label = '',
                icon = icon(name = 'question'),
                style = 'info',
                size = 'extra-small'
              )
            ),
            bsPopover(
              id = 'q3',
              title = 'Biomarkers Table',
              content = paste(
                'Only available for clusters with at least 15 cells.',
                paste(
                  # 'logFC: log fold-change between cells in the cluster specified and other cells',
                  'auc: area under ROC',
                  'padj: Benjamini-Hochberg adjusted p value',
                  'pct_in: percent of cells in the cluster with nonzero feature value',
                  'pct_out: percent of cells out of the cluster with nonzero feature value',
                  sep = '; '
                )
              ),
              placement = 'right',
              trigger = 'focus',
              options = list(container = 'body')
            ),
            div(
              id = 'markerclustersgroupinput',
              class = 'halves',
              selectizeInput(
                inputId = 'markerclustersgroup',
                label = 'Metadata group',
                choices = ''
              )
            ),
            div(
              id = 'markerclustersgroupinput',
              class = 'halves',
              selectizeInput(
                inputId = 'markerclusters',
                label = 'Predicted cell type',
                choices = ''
              )
            ),
            div(
              id = 'biotable',
              class = 'halves',
              h3('RNA biomarkers'),
              DTOutput(outputId = 'biomarkers')
            ),
            div(
              id = 'imputedtable',
              class = 'halves',
              uiOutput(outputId = 'imputedlabel'),
              DTOutput(outputId = 'adtbio')
            ),
            width = 12
          )
        ),
        # Downloads tab
        tabItem(
          tabName = 'tab_download',
          div(
            id = 'scriptdl',
            box(
              title = 'Analysis script template ',
              downloadButton(
                outputId = 'dlscript',
                label = 'Download'
              ),
              width = 6
            )
          ),
          div(
            id = 'umapdl',
            box(
              title = 'UMAP (Seurat Reduction RDS)',
              verbatimTextOutput(outputId = 'text.dlumap'),
              downloadButton(
                outputId = 'dlumap',
                label = 'Download'
              ),
              width = 6
            )
          ),
          div(
            id = 'imputeddl',
            box(
              title = 'Imputed protein (Seurat Assay RDS)',
              verbatimTextOutput(outputId = 'text.dladt'),
              downloadButton(
                outputId = 'dladt',
                label = 'Download'
              ),
              width = 6
            )
          ),
          div(
            id = 'predictionsdl',
            box(
              title = 'Predicted cell types and scores (TSV)',
              verbatimTextOutput(outputId = 'text.dlpred'),
              downloadButton(
                outputId = 'dlpred',
                label = 'Download'
              ),
              width = 6
            )
          ),
          div(
            id = 'alldl',
            box(
              title = 'All results',
              verbatimTextOutput(outputId = 'text.dlall'),
              downloadButton(
                outputId = 'dlall',
                label = 'Download'
              ),
              width = 6
            )
          )
        ),
        # Feedback tab
        tabItem(
          tabName = 'tab_feedback',
          box(
            div(
              h3('Tell us anything!'),
              textAreaInput(
                inputId = 'feedback',
                label = NULL,
                value = '',
                width = '100%',
                height = '300px',
                resize = 'none',
                placeholder = 'Were the results helpful? Did you encounter any bugs? Any new feature requests?'
              ),
              actionButton(inputId = "submit_feedback", label = "Submit"),
            ),
            width = 8
          )
        )
      )
    )
  )
)


#' 
#' ################### Bridge Integration #####################
#' 
#' AzimuthBridgeUI <- tagList(
#'   useShinyjs(),
#'   includeCSS(path = GetCSS()),
#'   dashboardPage(
#'     dashboardHeader(title = app.title),
#'     dashboardSidebar(
#'       fileInput(
#'         inputId = 'file',
#'         label = p(
#'           'File Upload',
#'           bsButton(
#'             'q1',
#'             label = '',
#'             icon = icon(name = 'question'),
#'             style = 'info',
#'             size = 'extra-small'
#'           )
#'         ),
#'         accept = c('.h5', '.h5ad', '.h5seurat', '.rds')
#'       ),
#'       bsPopover(
#'         id = 'q1',
#'         title = 'Supported file types',
#'         content = paste(
#'           '10x Genomics H5',
#'           'Seurat object (RDS)',
#'           'H5AD',
#'           'H5Seurat',
#'           'Matrix/matrix/data.frame (RDS)',
#'           sep = '; '
#'         ),
#'         placement = 'right',
#'         trigger = 'focus',
#'         options = list(container = 'body')
#'       ),
#'       div(
#'         id = "demobuttons"
#'       ),
#'       htmlOutput(outputId = 'message', inline = FALSE),
#'       sidebarMenu(
#'         menuItem(
#'           text = 'Welcome',
#'           tabName = 'tab_welcome',
#'           icon = icon(name = 'map'),
#'           selected = TRUE
#'         ),
#'         sidebarMenuOutput(outputId = 'menu1'),
#'         sidebarMenuOutput(outputId = 'menu2'),
#'         sidebarMenuOutput(outputId = 'menu3')
#'       ),
#'       htmlOutput(outputId = 'containerid', inline = FALSE)
#'     ),
#'     dashboardBody(
#'       tags$head(
#'         tags$style(
#'           HTML(".content-wrapper { overflow: auto }
#'           .wrapper {height: auto !important; position:relative; overflow-x:hidden; overflow-y:hidden}
#'           .shiny-notification {
#'             position: fixed;
#'             font-size: 15px;
#'             left: calc(50% - 100px);
#'             top: calc(90%);
#'             width: 350px;
#'           }
#'           .shiny-notification-close {
#'             display: none;
#'           }
#'           .small-box {height: 110px}
#'             "
#'           )
#'         )
#'       ),
#'       tabItems(
#'         # Welcome tab
#'         tabItem(
#'           tabName = 'tab_welcome',
#'           div(
#'             fluidRow(
#'               box(
#'                 htmlOutput(outputId = 'welcomebox'),
#'                 htmlOutput(outputId = 'refdescriptor'),
#'                 width=12
#'               ),
#'               width=12
#'             ),
#'             fluidRow(
#'               div(
#'                 style = "position:relative",
#'                 plotOutput(
#'                   outputId = 'refdim_intro',
#'                   hover = hoverOpts(
#'                     id = "refdim_intro_hover_location",
#'                     delay = 5,
#'                     delayType = "debounce",
#'                     nullOutside = TRUE
#'                   ),
#'                   height='1000px'
#'                 ),
#'                 uiOutput("refdim_intro_hover_box")
#'               ),
#'               width = 12,
#'               height='1000px'
#'             ),
#'           )
#'         ),
#'         # Preprocessing + QC Tab
#'         tabItem(
#'           tabName = 'tab_preproc',
#'           fluidRow(
#'             column(4, 
#'               wellPanel(
#'               box(
#'                 title = p(
#'                   'QC Filters',
#'                   bsButton(
#'                     inputId = 'q2',
#'                     label = '',
#'                     icon = icon(name = 'question'),
#'                     style = 'info',
#'                     size = 'extra-small'
#'                   )
#'                 ),
#'                 div(
#'                   id = 'ncount',
#'                   numericInput(
#'                     inputId = 'num.ncountmin',
#'                     label = NULL,
#'                     value = 0,
#'                     width = '90%'
#'                   ),
#'                   numericInput(
#'                     inputId = 'num.ncountmax',
#'                     label = NULL,
#'                     value = 0,
#'                     width = '90%'
#'                   )
#'                 ),
#'                 div(
#'                   id = 'nfeature',
#'                   numericInput(
#'                     inputId = 'num.nfeaturemin',
#'                     label = NULL,
#'                     value = 0,
#'                     width = '90%'
#'                   ),
#'                   numericInput(
#'                     inputId = 'num.nfeaturemax',
#'                     label = NULL,
#'                     value = 0,
#'                     width = '90%'
#'                   )
#'                 ),
#'                 textOutput(outputId = 'text.cellsremain'),
#'                 div(
#'                   id = 'xferopts',
#'                   h4(
#'                     'Transfer Options',
#'                     bsButton(
#'                       inputId = 'xferinput',
#'                       label = '',
#'                       icon = icon(name = 'question'),
#'                       style = 'info',
#'                       size = 'extra-small'
#'                     )
#'                   ),
#'                   bsPopover(
#'                     id = 'xferinput',
#'                     title = 'Transfer Options',
#'                     content = 'Select the meta.data fields to transfer from the reference',
#'                     placement = 'right',
#'                     trigger = 'focus',
#'                     options = list(container = 'body')
#'                   ),
#'                   selectizeInput(
#'                     inputId = 'metadataxfer',
#'                     label = 'Reference Metadata to Transfer',
#'                     choices = '',
#'                     multiple = TRUE
#'                   )
#'                 ),
#'                 disabled(actionButton(
#'                   inputId = 'map',
#'                   label = 'Map cells to reference'
#'                 )),
#'                 width = 3
#'               ),
#'               bsPopover(
#'                 id = 'q2',
#'                 title = 'QC Filters',
#'                 content = paste(
#'                   'Select a minimum and maximum value for nCount (number of molecules)',
#'                   'nFeature (number of genes expressed)',
#'                   #'and mitochondrial percentage (if applicable)',
#'                   sep = ', '
#'                 ),
#'                 placement = 'right',
#'                 trigger = 'focus',
#'                 options = list(container = 'body')
#'               ),
#'             box(
#'               checkboxGroupInput(inputId = "check.qc", label = NULL, choiceNames = c("Log-scale Y-axis", "Hide points"), choiceValues = c("qcscale", "qcpoints"), inline = TRUE),
#'               plotOutput(outputId = 'plot.qc'),
#'               tableOutput(outputId = 'table.qc'),
#'               width = 8
#'             ), 
#'           ),
#'           fluidRow(
#'             valueBoxOutput(outputId = 'valuebox.upload', width = 3),
#'             valueBoxOutput(outputId = 'valuebox_overlap', width = 3),
#'             valueBoxOutput(outputId = 'valuebox_jaccard', width = 3),
#'             valueBoxOutput(outputId = 'valuebox.preproc', width = 3),
#'             div(
#'               id = 'panchors_popup',
#'               valueBoxOutput(outputId = "valuebox_panchors", width = 3),
#'               bsTooltip(id = "valuebox_panchors", title = "Click for more info", placement = "top", trigger = 'hover'),
#'             ),
#'             div(
#'               id = 'overlap_popup',
#'               valueBoxOutput(outputId = "valuebox_overlap", width = 3),
#'               bsTooltip(id = "valuebox_overlap", title = "Click for more info", placement = "top", trigger = 'hover')
#'             ),
#'             div(
#'               id = 'mappingqcstat_popup',
#'               valueBoxOutput(outputId = "valuebox_mappingqcstat", width = 3),
#'               bsTooltip(id = "valuebox_mappingqcstat", title = "Click for more info", placement = "top", trigger = 'hover'),
#'             ),
#'             valueBoxOutput(outputId = 'valuebox.mapped', width = 3),
#'           ),
#'         ),
#'         tabItem(
#'           tabName = 'tab_cell',
#'           div(
#'             id = "topdim",
#'             width = 12
#'           ),
#'           div(
#'             id = "bottomdim",
#'             width = 12
#'           ),
#'           box(
#'             title = p(
#'               'Metadata table',
#'               bsButton(
#'                 inputId = 'q5',
#'                 label = '',
#'                 icon = icon(name = 'question'),
#'                 style = 'info',
#'                 size = 'extra-small'
#'               )
#'             ),
#'             bsPopover(
#'               id = 'q5',
#'               title = 'Metadata table',
#'               content = paste(
#'                 'A (usually) 2D table where each dimension represents a query metadata field, ',
#'                 'thus revealing the breakdown of any one query attribute when grouping by another. ',
#'                 'By default, a 1D table is produced where one dimension has constant value (\\"query\\") and ',
#'                 'the other is a predicted class (\\"predicted.XXX\\"), thus showing the overall breakdown of the ',
#'                 'predicted class.'),
#'               placement = 'right',
#'               trigger = 'focus',
#'               options = list(container = 'body')
#'             ),
#'             div(
#'               style = 'display: inline-block; vertical-align: top; width: 25%',
#'               selectizeInput(
#'                 inputId = 'metarow',
#'                 label = 'Table rows',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               style = 'display: inline-block; vertical-align: top; width: 25%',
#'               selectizeInput(
#'                 inputId = 'metacol',
#'                 label = 'Table columns',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               style = 'display: inline-block; vertical-align: top; width: 50%',
#'               radioButtons(
#'                 inputId = 'radio.pct',
#'                 label = NULL,
#'                 choices = c('Percentage','Frequency'),
#'                 inline = TRUE
#'               )
#'             ),
#'             div(
#'               id = 'tablemetadata'
#'             ),
#'             width = 12,
#'             height = 'auto'
#'           )
#'         ),
#'         # Motif tab
#'         tabItem(
#'           tags$head(tags$style(HTML(".selectize-dropdown .optgroup-header { font-weight: bold; font-size: 13px; color: black; background: #f6f6f6}"))),
#'           tabName = 'tab_motif',
#'           box(
#'             title = 'Motif Plots',
#'             div(
#'               id = 'motifinput',
#'               class = 'thirds',
#'               selectizeInput(
#'                 inputId = 'chromvar.feature',
#'                 label = 'Motif',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               id = 'continput.motif',
#'               class = 'thirds',
#'               selectizeInput(
#'                 inputId = 'metadata.cont.motif',
#'                 label = 'Prediction Scores and Metadata',
#'                 choices = ''
#'               )
#'             ),
#'             plotOutput(outputId = 'motifdim'),
#'             selectizeInput(
#'               inputId = 'metagroup.motif',
#'               label = 'Metadata to group by',
#'               choices = '',
#'               width = '25%'
#'             ),
#'             checkboxInput(inputId = 'check.featpoints', label = 'Hide points'),
#'             plotOutput(outputId = 'motifvln'),
#'             width = 12
#'           ),
#'           box(
#'             title = p(
#'               'Predicted cell type cluster motifs',
#'               bsButton(
#'                 inputId = 'q6',
#'                 label = '',
#'                 icon = icon(name = 'question'),
#'                 style = 'info',
#'                 size = 'extra-small'
#'               )
#'             ),
#'             bsPopover(
#'               id = 'q6',
#'               title = 'Motif Analysis Table',
#'               content = paste(
#'                 'Only available for clusters with at least 15 cells.',
#'                 paste(
#'                   # 'avg_diff: log fold-change between cells in the cluster specified and other cells',
#'                   'padj: Benjamini-Hochberg adjusted p value',
#'                   'pct_in: percent of cells in the cluster with nonzero feature value',
#'                   'pct_out: percent of cells out of the cluster with nonzero feature value',
#'                   sep = '; '
#'                 )
#'               ),
#'               placement = 'right',
#'               trigger = 'focus',
#'               options = list(container = 'body')
#'             ),
#'             div(
#'               id = 'markerclustersgroupinput.motif',
#'               class = 'full',
#'               selectizeInput(
#'                 inputId = 'markerclustersgroup.motif',
#'                 label = 'Metadata group',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               id = 'markerclustersgroupinput.motif',
#'               class = 'full',
#'               selectizeInput(
#'                 inputId = 'markerclusters.motif',
#'                 label = 'Predicted cell type',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               id = 'motiftable',
#'               class = 'full',
#'               h3('Motifs'),
#'               DTOutput(outputId = 'motifs')
#'             ),
#'             width = 12
#'           )
#'         ),
#'         # Feature tab
#'         tabItem(
#'           tags$head(tags$style(HTML(".selectize-dropdown .optgroup-header { font-weight: bold; font-size: 13px; color: black; background: #f6f6f6}"))),
#'           tabName = 'tab_feature',
#'           box(
#'             title = 'Feature Plots',
#'             div(
#'               id = 'featureinput',
#'               class = 'thirds',
#'               selectizeInput(
#'                 inputId = 'feature',
#'                 label = 'Feature',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               id = 'imputedinput',
#'               class = 'thirds',
#'               selectizeInput(
#'                 inputId = 'adtfeature',
#'                 label = 'Imputed protein',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               id = 'continput',
#'               class = 'thirds',
#'               selectizeInput(
#'                 inputId = 'metadata.cont',
#'                 label = 'Prediction Scores and Metadata',
#'                 choices = ''
#'               )
#'             ),
#'             plotOutput(outputId = 'edim'),
#'             selectizeInput(
#'               inputId = 'metagroup',
#'               label = 'Metadata to group by',
#'               choices = '',
#'               width = '25%'
#'             ),
#'             checkboxInput(inputId = 'check.featpoints', label = 'Hide points'),
#'             plotOutput(outputId = 'evln'),
#'             width = 12
#'           ),
#'           box(
#'             title = p(
#'               'Predicted cell type cluster biomarkers',
#'               bsButton(
#'                 inputId = 'q3',
#'                 label = '',
#'                 icon = icon(name = 'question'),
#'                 style = 'info',
#'                 size = 'extra-small'
#'               )
#'             ),
#'             bsPopover(
#'               id = 'q3',
#'               title = 'Biomarkers Table',
#'               content = paste(
#'                 'Only available for clusters with at least 15 cells.',
#'                 paste(
#'                   # 'logFC: log fold-change between cells in the cluster specified and other cells',
#'                   'auc: area under ROC',
#'                   'padj: Benjamini-Hochberg adjusted p value',
#'                   'pct_in: percent of cells in the cluster with nonzero feature value',
#'                   'pct_out: percent of cells out of the cluster with nonzero feature value',
#'                   sep = '; '
#'                 )
#'               ),
#'               placement = 'right',
#'               trigger = 'focus',
#'               options = list(container = 'body')
#'             ),
#'             div(
#'               id = 'markerclustersgroupinput',
#'               class = 'halves',
#'               selectizeInput(
#'                 inputId = 'markerclustersgroup',
#'                 label = 'Metadata group',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               id = 'markerclustersgroupinput',
#'               class = 'halves',
#'               selectizeInput(
#'                 inputId = 'markerclusters',
#'                 label = 'Predicted cell type',
#'                 choices = ''
#'               )
#'             ),
#'             div(
#'               id = 'biotable',
#'               class = 'halves',
#'               h3('RNA biomarkers'),
#'               DTOutput(outputId = 'biomarkers')
#'             ),
#'             div(
#'               id = 'imputedtable',
#'               class = 'halves',
#'               uiOutput(outputId = 'imputedlabel'),
#'               DTOutput(outputId = 'adtbio')
#'             ),
#'             width = 12
#'           )
#'         ),
#'         # Downloads tab
#'         tabItem(
#'           tabName = 'tab_download',
#'           div(
#'             id = 'scriptdl',
#'             box(
#'               title = 'Analysis script template ',
#'               downloadButton(
#'                 outputId = 'dlscript',
#'                 label = 'Download'
#'               ),
#'               width = 6
#'             )
#'           ),
#'           div(
#'             id = 'umapdl',
#'             box(
#'               title = 'UMAP (Seurat Reduction RDS)',
#'               verbatimTextOutput(outputId = 'text.dlumap'),
#'               downloadButton(
#'                 outputId = 'dlumap',
#'                 label = 'Download'
#'               ),
#'               width = 6
#'             )
#'           ),
#'           div(
#'             id = 'imputeddl',
#'             box(
#'               title = 'Imputed protein (Seurat Assay RDS)',
#'               verbatimTextOutput(outputId = 'text.dladt'),
#'               downloadButton(
#'                 outputId = 'dladt',
#'                 label = 'Download'
#'               ),
#'               width = 6
#'             )
#'           ),
#'           div(
#'             id = 'predictionsdl',
#'             box(
#'               title = 'Predicted cell types and scores (TSV)',
#'               verbatimTextOutput(outputId = 'text.dlpred'),
#'               downloadButton(
#'                 outputId = 'dlpred',
#'                 label = 'Download'
#'               ),
#'               width = 6
#'             )
#'           ),
#'           div(
#'             id = 'alldl',
#'             box(
#'               title = 'All results',
#'               verbatimTextOutput(outputId = 'text.dlall'),
#'               downloadButton(
#'                 outputId = 'dlall',
#'                 label = 'Download'
#'               ),
#'               width = 6
#'             )
#'           )
#'         ),
#'         # Feedback tab
#'         tabItem(
#'           tabName = 'tab_feedback',
#'           box(
#'             div(
#'               h3('Tell us anything!'),
#'               textAreaInput(
#'                 inputId = 'feedback',
#'                 label = NULL,
#'                 value = '',
#'                 width = '100%',
#'                 height = '300px',
#'                 resize = 'none',
#'                 placeholder = 'Were the results helpful? Did you encounter any bugs? Any new feature requests?'
#'               ),
#'               actionButton(inputId = "submit_feedback", label = "Submit"),
#'             ),
#'             width = 8
#'           )
#'         )
#'       )
#'     )
#'   )
#' )
#' 
satijalab/azimuth documentation built on Nov. 19, 2023, 8:34 a.m.