# A modified version of the BayesianTools::DEzs
DEzs <- function(bayesianSetup, save_inter = NULL, index_saving = NULL,
settings = list(iterations=10000,
Z = NULL,
startValue = NULL,
pSnooker = 0.1,
burnin = 0,
thin = 1,
f = 2.38,
eps = 0,
parallel = NULL,
pGamma1 = 0.1,
eps.mult =0.2,
eps.add = 0,
consoleUpdates = 100,
zUpdateFrequency = 1,
currentChain = 1,
blockUpdate = list("none", k = NULL, h = NULL, pSel = NULL, pGroup = NULL,
groupStart = 1000, groupIntervall = 1000)
,message = TRUE))
{
# X = startValue
# print("I got inside the function")
nbSave <- 1
if("bayesianOutput" %in% class(bayesianSetup)){
restart <- TRUE
} else restart <- FALSE
if(restart){
if(is.null(settings)) settings <- bayesianSetup$settings
else settings <- BayesianTools::applySettingsDefault(settings = settings, sampler = "DEzs")
}else{
# If nothing provided use default settings
settings <- BayesianTools::applySettingsDefault(settings = settings, sampler = "DEzs")
}
if(!restart){
setup <- bayesianSetup
} else setup <- bayesianSetup$setup
setup <- BayesianTools::checkBayesianSetup(setup, parallel = settings$parallel) # calling parallel will check if requested parallelization in settings is provided by the BayesianSetup
if(is.null(settings$parallel)) settings$parallel = setup$parallel # checking back - if no parallelization is provided, we use the parallelization in the BayesianSetup. We could also set parallel = FALSE, but I feel it makes more sense to use the Bayesiansetup as default
if(!restart){
if(is.null(settings$startValue)){
parLen = length(bayesianSetup$prior$sampler(1))
X = bayesianSetup$prior$sampler(3)
}
if(is.function(settings$startValue)){
X = settings$startValue()
}
if(class(settings$startValue)[1] == "numeric"){
X = bayesianSetup$prior$sampler(settings$startValue)
}
if(is.matrix(settings$startValue)) X <- settings$startValue
if(is.null(settings$Z)){
parLen = length(bayesianSetup$prior$sampler(1))
Z = bayesianSetup$prior$sampler(parLen * 10)
}
if(is.function(settings$Z)){
Z = settings$Z()
}
if(class(settings$Z)[1] == "numeric"){
Z = bayesianSetup$prior$sampler(settings$Z)
}
if(is.matrix(settings$Z)) Z <- settings$Z
}else{
X <- bayesianSetup$X
Z <- bayesianSetup$Z
if(is.vector(Z)) Z = as.matrix(Z)
}
if (! is.matrix(X)) stop("wrong starting values")
if (! is.matrix(Z)) stop("wrong Z values")
FUN = setup$posterior$density
if(is.null(settings$parallel)) parallel = setup$parallel else parallel <- settings$parallel
if(parallel == TRUE & setup$parallel == FALSE) stop("parallel = TRUE requested in DEzs but BayesianSetup does not support parallelization. See help of BayesianSetup on how to enable parallelization")
## Initialize blockUpdate parameters and settings
blockdefault <- list("none", k = NULL, h = NULL, pSel = NULL, pGroup = NULL,
groupStart = 1000, groupIntervall = 1000)
if(!is.null(settings$blockUpdate)){
blockUpdate <- utils::modifyList(blockdefault, settings$blockUpdate)
blockUpdate[[1]] <- settings$blockUpdate[[1]] # to catch first argument
if(blockUpdate[[1]] == "none"){
blockUpdateType <- "none"
blocks = FALSE
BlockStart = FALSE
}else{
groupStart <- blockUpdate$groupStart
groupIntervall <- blockUpdate$groupIntervall
blockUpdateType = blockUpdate[[1]]
blocks = TRUE
## Initialize BlockStart
BlockStart = FALSE
Bcount = 0
}
}else{
blockUpdateType <- "none"
blocks = FALSE
BlockStart = FALSE
}
# Initialize parameter values. Because they are called in
# the loop this saves time in comparison to referencing them
# every iteration using settings$...
iterations <- settings$iterations
consoleUpdates <- settings$currentChain
currentChain <- settings$currentChain
pSnooker <- settings$pSnooker
zUpdateFrequency <- settings$zUpdateFrequency
pGamma1 <- settings$pGamma1
eps.mult <- settings$eps.mult
eps.add <- settings$eps.add
# Initialization of previous chain length (= 0 if restart = FALSE)
lChainOld <- 0
Npar <- ncol(X)
Npar12 <- (Npar - 1)/2 # factor for Metropolis ratio DE Snooker update
# M0 is initial population size of Z is the size of Z, it's the same number, only kept 2 to stay consistent with the ter Brakk & Vrugt 2008
M = M0 = nrow(Z)
Npop <- nrow(X)
F2 = settings$f/sqrt(2*Npar)
F1 = 1.0
rr = NULL
r_extra = 0
#if(burnin != 0) stop("burnin option is currently not implemented")
burnin <- settings$burnin/Npop
n.iter <- ceiling(settings$iterations/Npop)
if (n.iter < 2) stop ("The total number of iterations must be greater than 3")
lChain <- ceiling((n.iter - burnin)/settings$thin)+1
pChain <- array(NA, dim=c(lChain, Npar+3, Npop))
colnames(pChain) <- c(setup$names, "LP", "LL", "LPr")
# Print adjusted iterations
# cat("Iterations adjusted to", n.iter*Npop,"to fit settings", "\n")
# assign memory for Z
Zold <- Z
Z <- matrix(NA, nrow= M0 + floor((n.iter-1) /zUpdateFrequency) * Npop, ncol=Npar)
Z[1:M,] <- Zold
counter <- 1
counterZ <- 0
# accept.prob <- 0
logfitness_X <- FUN(X, returnAll = TRUE)
# Write first values in chain
pChain[1,,] <- t(cbind(X,logfitness_X))
for (iter in 2:n.iter) {
f <- ifelse(iter%%10 == 0, 0.98, F1)
#accept <- 0
if(blocks){
### Update the groups.
if(iter == groupStart+ Bcount*groupIntervall){
blockSettings <- updateGroups(chain = pChain[1:counter,, ], blockUpdate)
BlockStart <- TRUE
Bcount <- Bcount + 1
}
}
if(parallel == TRUE | parallel == "external"){
x_prop <- matrix(NA, nrow= Npop, ncol=Npar)
r_extra <- numeric(Npop)
for(i in 1:Npop){
# select to random different individuals (and different from i) in rr, a 2-vector
rr <- sample.int(M, 3, replace = FALSE)
if(stats::runif(1) < pSnooker) {
z <- Z[rr[3],]
x_z <- X[i,] - z
D2 <- max(sum(x_z*x_z), 1.0e-300)
projdiff <- sum((Z[rr[1],] -Z[rr[2],]) * x_z)/D2 # inner_product of difference with x_z / squared norm x_z
gamma_snooker <- stats::runif(1, min=1.2,max=2.2)
x_prop[i,] <- X[i,] + gamma_snooker * projdiff * x_z
x_z <- x_prop[i,] - z
D2prop <- max(sum(x_z*x_z), 1.0e-300)
r_extra[i] <- Npar12 * (log(D2prop) - log(D2))
} else {
if ( stats::runif(1)< pGamma1 ) { gamma_par = F1 # to be able to jump between modes
} else {
gamma_par = F2 * stats::runif(Npar, min=1-eps.mult, max=1+eps.mult) # multiplicative error to be applied to the difference
# gamma_par = F2
}
rr = sample.int(M, 2, replace = FALSE)
if (eps.add ==0) { # avoid generating normal random variates if possible
x_prop[i,] = X[i,] + gamma_par * (Z[rr[1],]-Z[rr[2],])
} else {
x_prop[i,] = X[i,] + gamma_par * (Z[rr[1],]-Z[rr[2],]) + eps.add*stats::rnorm(Npar,0,1)
}
r_extra = rep(0, Npop)
}
}
# end proposal creation
if(BlockStart){
# Get the current group and update the proposal accordingly
Member <- getBlock(blockSettings)
x_prop[,-Member] <- X[,-Member]
####
}
# run proposals
logfitness_x_prop <- FUN(x_prop, returnAll = TRUE)
# evaluate acceptance
for(i in 1:Npop){
if(!is.na(logfitness_x_prop[i,1] - logfitness_X[i,1])){
if ((logfitness_x_prop[i,1] - logfitness_X[i,1] + r_extra[i]) > log(stats::runif(1))){
# accept <- accept + 1
X[i,] <- x_prop[i,]
logfitness_X[i,] <- logfitness_x_prop[i,]
}
}
}
} else{
# if not parallel
for (i in 1:Npop){
# select to random different individuals (and different from i) in rr, a 2-vector
rr <- sample.int(M, 3, replace = FALSE)
if(stats::runif(1) < pSnooker) {
z <- Z[rr[3],]
x_z <- X[i,] - z
D2 <- max(sum(x_z*x_z), 1.0e-300)
projdiff <- sum((Z[rr[1],] -Z[rr[2],]) * x_z)/D2 # inner_product of difference with x_z / squared norm x_z
gamma_snooker <- stats::runif(1, min=1.2,max=2.2)
x_prop <- X[i,] + gamma_snooker * projdiff * x_z
x_z <- x_prop - z
D2prop <- max(sum(x_z*x_z), 1.0e-300)
r_extra <- Npar12 * (log(D2prop) - log(D2))
} else {
if ( stats::runif(1)< pGamma1 ) { gamma_par = F1 # to be able to jump between modes
} else {
gamma_par = F2 * stats::runif(Npar, min=1-eps.mult, max=1+eps.mult) # multiplicative error to be applied to the difference
# gamma_par = F2
}
rr = sample.int(M, 2, replace = FALSE)
if (eps.add ==0) { # avoid generating normal random variates if possible
x_prop = X[i,] + gamma_par * (Z[rr[1],]-Z[rr[2],]) } else {
x_prop = X[i,] + gamma_par * (Z[rr[1],]-Z[rr[2],]) + eps.add*stats::rnorm(Npar,0,1)
}
r_extra = 0
}
if(BlockStart){
# Get the current group and update the proposal accordingly
Member <- getBlock(blockSettings)
x_prop[-Member] <- X[i,-Member]
####
}
# evaluate proposal - can this be mixed with the parallel above?
logfitness_x_prop <- FUN(x_prop, returnAll = TRUE)
# evaluate acceptance
if(!is.na(logfitness_x_prop[1] - logfitness_X[i,1])){
if ((logfitness_x_prop[1] - logfitness_X[i,1] + r_extra) > log(stats::runif(1))){
# accept <- accept + 1
X[i,] <- x_prop
logfitness_X[i,] <- logfitness_x_prop
}
}
} # for Npop
}
if ((iter > burnin) && (iter %% settings$thin == 0) ) { # retain sample
counter <- counter+1
pChain[counter,,] <- t(cbind(X,logfitness_X))
}
if (iter%%zUpdateFrequency == 0) { # update history
Z[( M0 + (counterZ*Npop) + 1 ):( M0 + (counterZ+1)*Npop),] <- X
counterZ <- counterZ +1
M <- M + Npop
}
# Console update
if(settings$message){
if( (iter %% settings$consoleUpdates == 0) | (iter == n.iter)) cat("\r","Running DEzs-MCMC, chain ", currentChain,
"iteration" ,iter*Npop,"of",n.iter*Npop,". Current logp ",
logfitness_X[,1],". Please wait!","\r")
utils::flush.console()
}
if(proc.time()[3]>save_inter[nbSave]){ # before we were saving at every iterations any(save_inter %in% iter)
nbSave <- nbSave +1
cat("\r", proc.time()[3])
# cat("\r", iter)
saveChain <- pChain
saveChain <- lapply(seq(dim(saveChain)[3]), function(x) saveChain[ , , x])
if(restart) saveChain <- lapply(seq_along(bayesianSetup$chain), function(x){rbind(as.array(bayesianSetup$chain[[x]]),pChain[,,x])})
saveChain <- lapply(seq_along(saveChain), function(x) saveChain[[x]][rowSums(is.na(saveChain[[x]])) != ncol(saveChain[[x]]), ])
saveZ <- Z[rowSums(is.na(Z)) != ncol(Z),]
mcmcSampler = list(
setup = setup,
settings = settings,
saveChain = saveChain,
X = as.matrix(X[,1:Npar]),
Z = saveZ,
sampler = "DEzs"
)
class(mcmcSampler) <- "bayesianOutput"
saveRDS(mcmcSampler, file = paste0("chainMW", index_saving, ".RDS"), compress = FALSE)
}
} # n.iter
pChain <- pChain[1:counter,,]
if(restart){ # Combine chains
newchains <- array(NA, dim = c((counter+nrow(bayesianSetup$chain[[1]])), (Npar+3), Npop))
for(i in 1:Npop){
for(k in 1:(Npar+3)){
newchains[,k,i] <- c(bayesianSetup$chain[[i]][,k],pChain[,k,i])
}
}
pChain <- newchains
}
pChain<- coda::as.mcmc.list(lapply(1:Npop,function(i) coda::as.mcmc(pChain[,1:(Npar+3),i])))
list(Draws = pChain, X = as.matrix(X[,1:Npar]), Z = Z)
}
# getBlock function not exported in BayesianTools
getBlock <- function(blockSettings){
groups <- blockSettings$cT
pGroup <- blockSettings$pGroup
pSel <- blockSettings$pSel
nGroups = max(groups)
if(nGroups == 1) return(1:length(groups))
if (is.null(pGroup)) pGroup = rep(1,nGroups)
if(length(pSel) > nGroups) pSel <- pSel[1:nGroups]
pSel = c(pSel, rep(0,nGroups - length(pSel)))
groupsToSample = sample.int(nGroups, 1, prob = pSel)
selectedGroups = sample.int(nGroups,groupsToSample, prob = pGroup[1:nGroups])
GroupMember <- which(is.element(groups,selectedGroups))
return(GroupMember)
}
# updateGroups function not exported in BayesianTools
updateGroups <- function(chain,blockSettings){
settings <- getBlockSettings(blockSettings)
blockUpdateType <- settings$blockUpdateType
switch(blockUpdateType,
"correlation" = {
## (Pair wise) Correlation in the parameters
cormat <- abs(stats::cor(chain[,1:(ncol(chain)-3),sample(1:dim(chain)[3],1)]))
diag(cormat) <- 0
# Correct for NA and Inf values as this could cause error in as.dist()
cormat[c(which(is.na(cormat)),which(cormat == Inf),which(cormat == -Inf)) ] <- 0
tree <- stats::hclust(stats::as.dist(1-cormat)) # get tree based on distance(dissimilarity = 1-cor).
cT <- stats::cutree(tree, k = settings$k, h = settings$h) # get groups. With h we can manipulate the strength of the interaction.
},
"user" = {
cT <- settings$groups
},
"random" = {
pool <- c(1:settings$k, sample(1:settings$k, (ncol(chain)-3-settings$k)))
cT <- sample(pool)
}
)
pSel <- settings$pSel
if(is.null(pSel) && is.null(settings$pGroup)) pSel = rep(1,ncol(chain)-3)
return(list(cT = cT, pGroup = settings$pGroup, pSel = pSel))
}
# getBlockSettings function not exported in BayesianTools
getBlockSettings <- function(blockUpdate){
h <- k <- pSel <- pGroup <- groups <- NULL
blockUpdateType <- blockUpdate[[1]]
switch(blockUpdateType,
"correlation" = {
h <- blockUpdate$h
k <- blockUpdate$k
pSel <- blockUpdate$pSel
pGroup <- blockUpdate$pGroup
},
"random"={
k <- blockUpdate$k
},
"user"= {
groups <- blockUpdate$groups
pSel <- blockUpdate$pSel
pGroup <- blockUpdate$pGroup
})
return(list(blockUpdateType = blockUpdateType, h = h, k = k, pSel = pSel,
pGroup = pGroup, groups = groups))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.