#
# density.ppp.R
#
# Method for 'density' for point patterns
#
# $Revision: 1.119 $ $Date: 2022/05/21 08:53:38 $
#
# ksmooth.ppp <- function(x, sigma, ..., edge=TRUE) {
# .Deprecated("density.ppp", package="spatstat")
# density.ppp(x, sigma, ..., edge=edge)
# }
density.ppp <- local({
density.ppp <- function(x, sigma=NULL, ...,
weights=NULL, edge=TRUE, varcov=NULL,
at="pixels", leaveoneout=TRUE,
adjust=1, diggle=FALSE, se=FALSE,
kernel="gaussian",
scalekernel=is.character(kernel),
positive=FALSE, verbose=TRUE) {
verifyclass(x, "ppp")
output <- pickoption("output location type", at,
c(pixels="pixels",
points="points"))
if(any(sidelengths(Frame(x)) == 0)) { ## pixels will have zero area
val <- npoints(x)/0 # Inf or NaN
return(as.im(val, W=Frame(x), ...))
}
if(!identical(kernel, "gaussian")) {
validate2Dkernel(kernel)
## kernel is only partly implemented!
if(se)
stop("Standard errors are not implemented for non-Gaussian kernel")
if(verbose && scalekernel &&
(is.function(sigma) || (is.null(sigma) && is.null(varcov))))
warning("Bandwidth selection will be based on Gaussian kernel")
}
ker <- resolve.2D.kernel(..., sigma=sigma, varcov=varcov, x=x, adjust=adjust)
sigma <- ker$sigma
varcov <- ker$varcov
## sigma.is.infinite <- ker$infinite
if(is.im(weights)) {
weights <- safelookup(weights, x) # includes warning if NA
} else if(is.expression(weights))
weights <- eval(weights, envir=as.data.frame(x), enclos=parent.frame())
if(length(weights) == 0 || (!is.null(dim(weights)) && nrow(weights) == 0))
weights <- NULL
if(se) {
# compute standard error
SE <- denspppSEcalc(x, sigma=sigma, varcov=varcov,
...,
weights=weights, edge=edge, at=output,
leaveoneout=leaveoneout, adjust=adjust,
diggle=diggle)
if(positive) SE <- posify(SE)
}
## infinite bandwidth
if(bandwidth.is.infinite(sigma)) {
#' uniform estimate
nx <- npoints(x)
single <- is.null(dim(weights))
totwt <- if(is.null(weights)) nx else
if(single) sum(weights) else colSums(weights)
if(!edge) totwt <- 0 * totwt
W <- Window(x)
A <- area.owin(W)
switch(output,
pixels = {
E <- solapply(totwt/A, as.im, W=W, ...)
names(E) <- colnames(weights)
if(single) E <- E[[1L]]
},
points = {
numerator <- rep(totwt, each=nx)
if(!single) numerator <- matrix(numerator, nrow=nx)
if(leaveoneout && edge)
numerator <- numerator - (weights %orifnull% 1)
E <- numerator/A
if(!single)
colnames(E) <- colnames(weights)
})
result <- if(se) list(estimate=E, SE=SE) else E
return(result)
}
if(output == "points") {
# VALUES AT DATA POINTS ONLY
result <- densitypointsEngine(x, sigma,
varcov=varcov,
kernel=kernel,
scalekernel=scalekernel,
weights=weights, edge=edge,
leaveoneout=leaveoneout,
diggle=diggle, ...)
if(verbose && !is.null(uhoh <- attr(result, "warnings"))) {
switch(uhoh,
underflow=warning("underflow due to very small bandwidth"),
warning(uhoh))
}
## constrain values to be positive
if(positive)
result <- posify(result)
if(se)
result <- list(estimate=result, SE=SE)
return(result)
}
# VALUES AT PIXELS
if(!edge) {
# no edge correction
edg <- NULL
raw <- second.moment.calc(x, sigma, what="smooth", ...,
kernel=kernel,
scalekernel=scalekernel,
weights=weights, varcov=varcov)
raw <- divide.by.pixelarea(raw)
smo <- raw
} else if(!diggle) {
# edge correction e(u)
both <- second.moment.calc(x, sigma, what="smoothedge", ...,
kernel=kernel,
scalekernel=scalekernel,
weights=weights, varcov=varcov)
raw <- divide.by.pixelarea(both$smooth)
edg <- both$edge
## Math.im / Math.imlist not yet working
smo <- imagelistOp(raw, edg, "/")
} else {
# edge correction e(x_i)
edg <- second.moment.calc(x, sigma, what="edge", ...,
scalekernel=scalekernel,
kernel=kernel, varcov=varcov)
wi <- 1/safelookup(edg, x, warn=FALSE)
wi[!is.finite(wi)] <- 0
# edge correction becomes weight attached to points
if(is.null(weights)) {
newweights <- wi
} else if(is.matrix(weights) || is.data.frame(weights)) {
stopifnot(nrow(weights) == npoints(x))
newweights <- weights * wi
} else {
stopifnot(length(weights) == npoints(x))
newweights <- weights * wi
}
raw <- second.moment.calc(x, sigma, what="smooth", ...,
kernel=kernel,
scalekernel=scalekernel,
weights=newweights, varcov=varcov)
raw <- divide.by.pixelarea(raw)
smo <- raw
}
result <- if(is.im(smo)) smo[x$window, drop=FALSE]
else solapply(smo, "[", i=x$window, drop=FALSE)
# internal use only
spill <- resolve.1.default(list(spill=FALSE), list(...))
if(spill)
return(list(result=result, sigma=sigma, varcov=varcov, raw = raw, edg=edg))
# constrain values to be positive
if(positive)
result <- posify(result)
# normal return
attr(result, "sigma") <- sigma
attr(result, "varcov") <- varcov
attr(result, "kernel") <- kernel
if(se)
result <- list(estimate=result, SE=SE)
return(result)
}
divideimage <- function(numer, denom) eval.im(numer/denom)
posify <- function(x, eps=.Machine$double.xmin) {
force(eps) # scalpel
if(is.im(x)) return(eval.im(pmax(eps, x)))
if(inherits(x, "solist")) return(solapply(x, posify, eps=eps))
if(is.numeric(x)) return(pmax(eps, x))
# data frame or list
if(is.list(x) && all(sapply(x, is.numeric)))
return(lapply(x, posify, eps=eps))
warning("Internal error: posify did not recognise data format")
return(x)
}
divide.by.pixelarea <- function(x) {
if(is.im(x)) {
x$v <- x$v/(x$xstep * x$ystep)
} else {
for(i in seq_along(x))
x[[i]]$v <- with(x[[i]], v/(xstep * ystep))
}
return(x)
}
denspppSEcalc <- function(x, sigma, varcov, ...,
weights, edge, diggle, at) {
## Calculate standard error, rather than estimate
nx <- npoints(x)
single <- is.null(dim(weights))
if(bandwidth.is.infinite(sigma)) {
#' special case - uniform
totwt2 <- if(is.null(weights)) nx else
if(single) sum(weights^2) else colSums(weights^2)
if(!edge)
totwt2 <- 0 * totwt2
W <- Window(x)
A <- area.owin(W)
switch(at,
pixels = {
V <- solapply(totwt2/A, as.im, W=W, ...)
names(V) <- colnames(weights)
if(single) V <- V[[1L]]
},
points = {
numerator <- rep(totwt2, each=nx)
if(!single) numerator <- matrix(numerator, nrow=nx)
leaveoneout <- resolve.1.default(list(leaveoneout=TRUE), list(...))
if(edge && leaveoneout)
numerator <- numerator - (weights %orifnull% 1)^2
V <- numerator/A
if(!single)
colnames(V) <- colnames(weights)
})
return(sqrt(V))
}
## Usual case
tau <- taumat <- NULL
if(is.null(varcov)) {
varconst <- 1/(4 * pi * prod(ensure2vector(sigma)))
tau <- sigma/sqrt(2)
} else {
varconst <- 1/(4 * pi * sqrt(det(varcov)))
taumat <- varcov/2
}
## Calculate edge correction weights
if(edge) {
edgeim <- second.moment.calc(x, sigma, what="edge", ...,
varcov=varcov)
if(diggle || at == "points") {
edgeX <- safelookup(edgeim, x, warn=FALSE)
diggleX <- 1/edgeX
diggleX[!is.finite(diggleX)] <- 0
}
edgeim <- edgeim[Window(x), drop=FALSE]
}
## Perform smoothing
if(!edge) {
## no edge correction
V <- density(x, sigma=tau, varcov=taumat, ...,
weights=weights, edge=edge, diggle=diggle, at=at)
} else if(!diggle) {
## edge correction e(u)
V <- density(x, sigma=tau, varcov=taumat, ...,
weights=weights, edge=edge, diggle=diggle, at=at)
V <- if(at == "points") V * diggleX else imagelistOp(V, edgeim, "/")
} else {
## Diggle edge correction e(x_i)
wts <- if(is.null(weights)) diggleX else (diggleX * weights)
V <- density(x, sigma=tau, varcov=taumat, ...,
weights=wts, edge=edge, diggle=diggle, at=at)
}
V <- V * varconst
return(sqrt(V))
}
density.ppp
})
densitypointsEngine <- function(x, sigma=NULL, ...,
kernel="gaussian",
scalekernel=is.character(kernel),
weights=NULL, edge=TRUE, varcov=NULL,
leaveoneout=TRUE, diggle=FALSE,
sorted=FALSE, spill=FALSE, cutoff=NULL,
debug=FALSE) {
stopifnot(is.logical(leaveoneout))
validate2Dkernel(kernel)
if(is.character(kernel)) kernel <- match2DkernelName(kernel)
isgauss <- identical(kernel, "gaussian")
if(isgauss) {
## constant factor in Gaussian density
if(is.null(varcov)) {
gaussconst <- 1/(2 * pi * sigma^2)
} else {
detSigma <- det(varcov)
Sinv <- solve(varcov)
gaussconst <- 1/(2 * pi * sqrt(detSigma))
}
}
if(length(weights) == 0 || (!is.null(dim(weights)) && nrow(weights) == 0))
weights <- NULL
## infinite bandwidth
if(bandwidth.is.infinite(sigma)) {
#' uniform estimate
nx <- npoints(x)
single <- is.null(dim(weights))
totwt <- if(is.null(weights)) nx else
if(single) sum(weights) else colSums(weights)
if(!edge) totwt <- 0 * totwt
W <- Window(x)
A <- area.owin(W)
numerator <- rep(totwt, each=nx)
if(!single) numerator <- matrix(numerator, nrow=nx)
if(leaveoneout && edge)
numerator <- numerator - (weights %orifnull% 1)
result <- numerator/A
if(!single)
colnames(result) <- colnames(weights)
return(result)
}
## cutoff distance (beyond which the kernel value is treated as zero)
## NB: input argument 'cutoff' is either NULL or
## an absolute distance (if scalekernel=FALSE)
## a number of standard deviations (if scalekernel=TRUE)
cutoff <- cutoff2Dkernel(kernel, sigma=sigma, varcov=varcov,
scalekernel=scalekernel, cutoff=cutoff,
fatal=TRUE)
## cutoff is now an absolute distance
if(debug)
cat(paste("cutoff=", cutoff, "\n"))
if(leaveoneout && npoints(x) > 1) {
## ensure each point has its closest neighbours within the cutoff
nndmax <- maxnndist(x)
cutoff <- max(2 * nndmax, cutoff)
if(debug)
cat(paste("adjusted cutoff=", cutoff, "\n"))
}
# validate weights
if(is.null(weights)) {
k <- 1L
} else if(is.matrix(weights) || is.data.frame(weights)) {
k <- ncol(weights)
stopifnot(nrow(weights) == npoints(x))
weights <- as.data.frame(weights)
weightnames <- colnames(weights)
} else {
k <- 1L
stopifnot(length(weights) == npoints(x) || length(weights) == 1L)
}
# evaluate edge correction weights at points
if(edge) {
win <- x$window
if(isgauss && is.null(varcov) && win$type == "rectangle") {
# evaluate Gaussian probabilities directly
xr <- win$xrange
yr <- win$yrange
xx <- x$x
yy <- x$y
xprob <-
pnorm(xr[2L], mean=xx, sd=sigma) - pnorm(xr[1L], mean=xx, sd=sigma)
yprob <-
pnorm(yr[2L], mean=yy, sd=sigma) - pnorm(yr[1L], mean=yy, sd=sigma)
edgeweight <- xprob * yprob
} else {
edg <- second.moment.calc(x, sigma=sigma,
kernel=kernel,
scalekernel=scalekernel,
what="edge", varcov=varcov, ...)
edgeweight <- safelookup(edg, x, warn=FALSE)
}
if(diggle) {
# Diggle edge correction
# edgeweight is attached to each point
if(is.null(weights)) {
k <- 1L
weights <- 1/edgeweight
} else {
weights <- weights/edgeweight
}
}
}
if(isgauss &&
spatstat.options("densityTransform") && spatstat.options("densityC")) {
## .................. experimental C code .....................
if(debug)
cat('Using experimental code!\n')
npts <- npoints(x)
result <- if(k == 1L) numeric(npts) else matrix(, npts, k)
xx <- x$x
yy <- x$y
## transform to standard coordinates
if(is.null(varcov)) {
xx <- xx/(sqrt(2) * sigma)
yy <- yy/(sqrt(2) * sigma)
} else {
xy <- cbind(xx, yy) %*% matrixsqrt(Sinv/2)
xx <- xy[,1L]
yy <- xy[,2L]
sorted <- FALSE
}
## cutoff in standard coordinates
sd <- sigma %orifnull% sqrt(min(eigen(varcov)$values))
cutoff <- cutoff/(sqrt(2) * sd)
## sort into increasing order of x coordinate (required by C code)
if(!sorted) {
oo <- fave.order(xx)
xx <- xx[oo]
yy <- yy[oo]
}
if(is.null(weights)) {
zz <- .C(SC_Gdenspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[oo] <- zz$result
result <- result * gaussconst
} else if(k == 1L) {
wtsort <- if(sorted) weights else weights[oo]
zz <- .C(SC_Gwtdenspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
weight = as.double(wtsort),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[oo] <- zz$result
result <- result * gaussconst
} else {
## matrix of weights
wtsort <- if(sorted) weights else weights[oo, ]
for(j in 1:k) {
zz <- .C(SC_Gwtdenspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
weight = as.double(wtsort[,j]),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result[,j] <- zz$result else result[oo,j] <- zz$result
}
result <- result * gaussconst
}
} else if(isgauss && spatstat.options("densityC")) {
# .................. C code ...........................
if(debug)
cat('Using standard code.\n')
npts <- npoints(x)
result <- if(k == 1L) numeric(npts) else matrix(, npts, k)
# sort into increasing order of x coordinate (required by C code)
if(sorted) {
xx <- x$x
yy <- x$y
} else {
oo <- fave.order(x$x)
xx <- x$x[oo]
yy <- x$y[oo]
}
if(is.null(varcov)) {
# isotropic kernel
if(is.null(weights)) {
zz <- .C(SC_denspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
sig = as.double(sigma),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[oo] <- zz$result
} else if(k == 1L) {
wtsort <- if(sorted) weights else weights[oo]
zz <- .C(SC_wtdenspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
sig = as.double(sigma),
weight = as.double(wtsort),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[oo] <- zz$result
} else {
# matrix of weights
wtsort <- if(sorted) weights else weights[oo, ]
for(j in 1:k) {
zz <- .C(SC_wtdenspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
sig = as.double(sigma),
weight = as.double(wtsort[,j]),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result[,j] <- zz$result else result[oo,j] <- zz$result
}
}
} else {
# anisotropic kernel
flatSinv <- as.vector(t(Sinv))
if(is.null(weights)) {
zz <- .C(SC_adenspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
detsigma = as.double(detSigma),
sinv = as.double(flatSinv),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[oo] <- zz$result
} else if(k == 1L) {
# vector of weights
wtsort <- if(sorted) weights else weights[oo]
zz <- .C(SC_awtdenspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
detsigma = as.double(detSigma),
sinv = as.double(flatSinv),
weight = as.double(wtsort),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[oo] <- zz$result
} else {
# matrix of weights
wtsort <- if(sorted) weights else weights[oo, ]
for(j in 1:k) {
zz <- .C(SC_awtdenspt,
nxy = as.integer(npts),
x = as.double(xx),
y = as.double(yy),
rmaxi = as.double(cutoff),
detsigma = as.double(detSigma),
sinv = as.double(flatSinv),
weight = as.double(wtsort[,j]),
result = as.double(double(npts)),
PACKAGE="spatstat.core")
if(sorted) result[,j] <- zz$result else result[oo,j] <- zz$result
}
}
}
} else {
# ..... interpreted code .........................................
close <- closepairs(x, cutoff)
i <- close$i
j <- close$j
d <- close$d
npts <- npoints(x)
result <- if(k == 1L) numeric(npts) else matrix(, npts, k)
# evaluate contribution from each close pair (i,j)
if(isgauss) {
if(is.null(varcov)) {
contrib <- gaussconst * exp(-d^2/(2 * sigma^2))
} else {
## anisotropic kernel
dx <- close$dx
dy <- close$dy
contrib <- gaussconst * exp(-(dx * (dx * Sinv[1L,1L] + dy * Sinv[1L,2L])
+ dy * (dx * Sinv[2L,1L] + dy * Sinv[2L,2L]))/2)
}
} else {
contrib <- evaluate2Dkernel(kernel, close$dx, close$dy,
sigma=sigma, varcov=varcov,
scalekernel=scalekernel, ...)
}
## sum (weighted) contributions
## query point i, data point j
ifac <- factor(i, levels=1:npts)
if(is.null(weights)) {
result <- tapplysum(contrib, list(ifac))
} else if(k == 1L) {
wcontrib <- contrib * weights[j]
result <- tapplysum(wcontrib, list(ifac))
} else {
for(kk in 1:k) {
wcontribkk <- contrib * weights[j, kk]
result[,kk] <- tapplysum(wcontribkk, list(ifac))
}
}
#
}
# ----- contribution from point itself ----------------
if(!leaveoneout) {
#' add contribution from point itself
if(isgauss) {
self <- gaussconst
} else {
self <- evaluate2Dkernel(kernel, 0, 0, sigma=sigma, varcov=varcov,
scalekernel=scalekernel, ...)
}
if(!is.null(weights))
self <- self * weights
result <- result + self
}
# ........ Edge correction ........................................
if(edge && !diggle)
result <- result/edgeweight
# ............. validate .................................
npts <- npoints(x)
if(k == 1L) {
result <- as.numeric(result)
if(length(result) != npts)
stop(paste("Internal error: incorrect number of lambda values",
"in leave-one-out method:",
"length(lambda) = ", length(result),
"!=", npts, "= npoints"))
if(anyNA(result)) {
nwrong <- sum(is.na(result))
stop(paste("Internal error:", nwrong, "NA or NaN",
ngettext(nwrong, "value", "values"),
"generated in leave-one-out method"))
}
} else {
if(ncol(result) != k)
stop(paste("Internal error: incorrect number of columns returned:",
ncol(result), "!=", k))
colnames(result) <- weightnames
if(nrow(result) != npts)
stop(paste("Internal error: incorrect number of rows of lambda values",
"in leave-one-out method:",
"nrow(lambda) = ", nrow(result),
"!=", npts, "= npoints"))
if(anyNA(result)) {
nwrong <- sum(!complete.cases(result))
stop(paste("Internal error:", nwrong,
ngettext(nwrong, "row", "rows"),
"of NA values generated in leave-one-out method"))
}
}
if(spill)
return(list(result=result, sigma=sigma, varcov=varcov,
edg=edgeweight))
# tack on bandwidth
attr(result, "sigma") <- sigma
attr(result, "varcov") <- varcov
#
return(result)
}
resolve.2D.kernel <- function(..., sigma=NULL, varcov=NULL, x, mindist=NULL,
adjust=1, bwfun=NULL, allow.zero=FALSE) {
if(is.function(sigma)) {
bwfun <- sigma
sigma <- NULL
}
if(is.null(sigma) && is.null(varcov) && !is.null(bwfun)) {
#' call bandwidth selection function
force(x)
bw <- do.call.matched(bwfun,
resolve.defaults(list(X=quote(x)),
list(...)))
#' interpret the result as either sigma or varcov
if(!is.numeric(bw))
stop("bandwidth selector returned a non-numeric result")
if(length(bw) %in% c(1L,2L)) {
sigma <- as.numeric(bw)
if(!all(sigma > 0)) {
gripe <- "bandwidth selector returned negative value(s)"
if(allow.zero) warning(gripe) else stop(gripe)
}
} else if(is.matrix(bw) && nrow(bw) == 2 && ncol(bw) == 2) {
varcov <- bw
if(!all(eigen(varcov)$values > 0))
stop("bandwidth selector returned matrix with negative eigenvalues")
} else stop("bandwidth selector did not return a matrix or numeric value")
}
sigma.given <- !is.null(sigma)
varcov.given <- !is.null(varcov)
if(sigma.given) {
stopifnot(is.numeric(sigma))
stopifnot(length(sigma) %in% c(1L,2L))
if(!allow.zero)
stopifnot(all(sigma > 0))
}
if(varcov.given)
stopifnot(is.matrix(varcov) && nrow(varcov) == 2 && ncol(varcov)==2 )
# reconcile
ngiven <- varcov.given + sigma.given
switch(ngiven+1L,
{
# default
w <- x$window
sigma <- (1/8) * shortside(as.rectangle(w))
},
{
if(sigma.given && length(sigma) == 2)
varcov <- diag(sigma^2)
if(!is.null(varcov))
sigma <- NULL
},
{
stop(paste("Give only one of the arguments",
sQuote("sigma"), "and", sQuote("varcov")))
})
# apply adjustments
if(!is.null(sigma)) sigma <- adjust * sigma
if(!is.null(varcov)) varcov <- (adjust^2) * varcov
#
sd <- if(is.null(varcov)) sigma else sqrt(sum(diag(varcov)))
cutoff <- 8 * sd
uhoh <- if(!is.null(mindist) && cutoff < mindist) "underflow" else NULL
result <- list(sigma=sigma, varcov=varcov, cutoff=cutoff, warnings=uhoh)
return(result)
}
densitycrossEngine <- function(Xdata, Xquery, sigma=NULL, ...,
kernel="gaussian",
scalekernel=is.character(kernel),
weights=NULL, edge=TRUE, varcov=NULL,
diggle=FALSE,
sorted=FALSE, cutoff=NULL) {
validate2Dkernel(kernel)
if(is.character(kernel)) kernel <- match2DkernelName(kernel)
isgauss <- identical(kernel, "gaussian") && scalekernel
if(length(weights) == 0 || (!is.null(dim(weights)) && nrow(weights) == 0))
weights <- NULL
# validate weights
if(is.null(weights)) {
k <- 1L
} else if(is.matrix(weights) || is.data.frame(weights)) {
k <- ncol(weights)
stopifnot(nrow(weights) == npoints(Xdata))
weights <- as.data.frame(weights)
weightnames <- colnames(weights)
} else {
k <- 1L
stopifnot(length(weights) == npoints(Xdata) || length(weights) == 1L)
}
#' infinite bandwidth
if(bandwidth.is.infinite(sigma)) {
#' uniform estimate
single <- is.null(dim(weights))
totwt <- if(is.null(weights)) npoints(Xdata) else
if(single) sum(weights) else colSums(weights)
if(!edge) totwt <- 0 * totwt
lam <- totwt/area.owin(Window(Xdata))
result <- if(single) rep(lam, npoints(Xquery)) else
matrix(lam, npoints(Xquery), length(lam), byrow=TRUE,
dimnames=list(NULL, colnames(weights)))
return(result)
}
# evaluate edge correction weights at points
if(edge) {
win <- Xdata$window
if(diggle) {
## edge correction weights are attached to data points
xedge <- Xdata
} else {
## edge correction weights are applied at query points
xedge <- Xquery
if(!all(inside.owin(Xquery, , win)))
stop(paste("Edge correction is not possible:",
"some query points lie outside the data window"),
call.=FALSE)
}
if(isgauss && is.null(varcov) && win$type == "rectangle") {
## evaluate Gaussian probabilities directly
xr <- win$xrange
yr <- win$yrange
xx <- xedge$x
yy <- xedge$y
xprob <-
pnorm(xr[2L], mean=xx, sd=sigma) - pnorm(xr[1L], mean=xx, sd=sigma)
yprob <-
pnorm(yr[2L], mean=yy, sd=sigma) - pnorm(yr[1L], mean=yy, sd=sigma)
edgeweight <- xprob * yprob
} else {
## evaluate edge correction weights
edg <- second.moment.calc(Xdata, what="edge",
kernel=kernel, scalekernel=scalekernel,
sigma=sigma, varcov=varcov)
edgeweight <- safelookup(edg, xedge, warn=FALSE)
}
if(diggle) {
## Diggle edge correction
## edgeweight is attached to each data point
if(is.null(weights)) {
k <- 1L
weights <- 1/edgeweight
} else {
weights <- weights/edgeweight
}
}
}
## cutoff distance (beyond which the kernel value is treated as zero)
## NB: input argument 'cutoff' is either NULL or
## an absolute distance (if scalekernel=FALSE)
## a number of standard deviations (if scalekernel=TRUE)
cutoff <- cutoff2Dkernel(kernel, sigma=sigma, varcov=varcov,
scalekernel=scalekernel, cutoff=cutoff,
fatal=TRUE)
## cutoff is now an absolute distance
ndata <- npoints(Xdata)
nquery <- npoints(Xquery)
if(!isgauss) {
## .................. non-Gaussian kernel ........................
close <- crosspairs(Xdata, Xquery, cutoff)
contrib <- evaluate2Dkernel(kernel, close$dx, close$dy,
sigma=sigma, varcov=varcov,
scalekernel=scalekernel, ...)
## sum the (weighted) contributions
i <- close$i
j <- close$j
jfac <- factor(j, levels=seq_len(nquery))
if(is.null(weights)) {
result <- tapplysum(contrib, list(jfac))
} else if(k == 1L) {
wcontrib <- contrib * weights[i]
result <- tapplysum(wcontrib, list(jfac))
} else {
result <- matrix(, nquery, k)
for(kk in 1:k) {
wcontribkk <- contrib * weights[i, kk]
result[,kk] <- tapplysum(wcontribkk, list(jfac))
}
}
} else {
## ................. Gaussian kernel ...................
result <- if(k == 1L) numeric(nquery) else matrix(, nquery, k)
## coordinates
xq <- Xquery$x
yq <- Xquery$y
xd <- Xdata$x
yd <- Xdata$y
if(!sorted) {
## sort into increasing order of x coordinate (required by C code)
ooq <- fave.order(Xquery$x)
xq <- xq[ooq]
yq <- yq[ooq]
ood <- fave.order(Xdata$x)
xd <- xd[ood]
yd <- yd[ood]
}
if(is.null(varcov)) {
## isotropic kernel
if(is.null(weights)) {
zz <- .C(SC_crdenspt,
nquery = as.integer(nquery),
xq = as.double(xq),
yq = as.double(yq),
ndata = as.integer(ndata),
xd = as.double(xd),
yd = as.double(yd),
rmaxi = as.double(cutoff),
sig = as.double(sigma),
result = as.double(double(nquery)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[ooq] <- zz$result
} else if(k == 1L) {
wtsort <- if(sorted) weights else weights[ood]
zz <- .C(SC_wtcrdenspt,
nquery = as.integer(nquery),
xq = as.double(xq),
yq = as.double(yq),
ndata = as.integer(ndata),
xd = as.double(xd),
yd = as.double(yd),
wd = as.double(wtsort),
rmaxi = as.double(cutoff),
sig = as.double(sigma),
result = as.double(double(nquery)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[ooq] <- zz$result
} else {
## matrix of weights
wtsort <- if(sorted) weights else weights[ood, ]
for(j in 1:k) {
zz <- .C(SC_wtcrdenspt,
nquery = as.integer(nquery),
xq = as.double(xq),
yq = as.double(yq),
ndata = as.integer(ndata),
xd = as.double(xd),
yd = as.double(yd),
wd = as.double(wtsort[,j]),
rmaxi = as.double(cutoff),
sig = as.double(sigma),
result = as.double(double(nquery)),
PACKAGE="spatstat.core")
if(sorted) result[,j] <- zz$result else result[ooq,j] <- zz$result
}
colnames(result) <- weightnames
}
} else {
## anisotropic kernel
detSigma <- det(varcov)
Sinv <- solve(varcov)
flatSinv <- as.vector(t(Sinv))
if(is.null(weights)) {
zz <- .C(SC_acrdenspt,
nquery = as.integer(nquery),
xq = as.double(xq),
yq = as.double(yq),
ndata = as.integer(ndata),
xd = as.double(xd),
yd = as.double(yd),
rmaxi = as.double(cutoff),
detsigma = as.double(detSigma),
sinv = as.double(flatSinv),
result = as.double(double(nquery)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[ooq] <- zz$result
} else if(k == 1L) {
## vector of weights
wtsort <- if(sorted) weights else weights[ood]
zz <- .C(SC_awtcrdenspt,
nquery = as.integer(nquery),
xq = as.double(xq),
yq = as.double(yq),
ndata = as.integer(ndata),
xd = as.double(xd),
yd = as.double(yd),
wd = as.double(wtsort),
rmaxi = as.double(cutoff),
detsigma = as.double(detSigma),
sinv = as.double(flatSinv),
result = as.double(double(nquery)),
PACKAGE="spatstat.core")
if(sorted) result <- zz$result else result[ooq] <- zz$result
} else {
## matrix of weights
wtsort <- if(sorted) weights else weights[ood, ]
for(j in 1:k) {
zz <- .C(SC_awtcrdenspt,
nquery = as.integer(nquery),
xq = as.double(xq),
yq = as.double(yq),
ndata = as.integer(ndata),
xd = as.double(xd),
yd = as.double(yd),
wd = as.double(wtsort[,j]),
rmaxi = as.double(cutoff),
detsigma = as.double(detSigma),
sinv = as.double(flatSinv),
result = as.double(double(nquery)),
PACKAGE="spatstat.core")
if(sorted) result[,j] <- zz$result else result[ooq,j] <- zz$result
}
colnames(result) <- weightnames
}
}
}
# ........ Edge correction ........................................
if(edge && !diggle)
result <- result/edgeweight
# tack on bandwidth
attr(result, "sigma") <- sigma
attr(result, "varcov") <- varcov
#
return(result)
}
bandwidth.is.infinite <- function(sigma) {
sigma <- as.numeric(sigma)
return((length(sigma) > 0) && all(sigma == Inf))
}
density.ppplist <-
density.splitppp <- function(x, ..., weights=NULL, se=FALSE) {
if(is.null(weights) || is.im(weights) || is.expression(weights))
weights <- rep(list(weights), length(x))
y <- mapply(density.ppp, x=x, weights=weights,
MoreArgs=list(se=se, ...),
SIMPLIFY=FALSE)
if(!se) return(as.solist(y, demote=TRUE))
y.est <- lapply(y, getElement, name="estimate")
y.se <- lapply(y, getElement, name="SE")
z <- list(estimate = as.solist(y.est, demote=TRUE),
SE = as.solist(y.se, demote=TRUE))
return(z)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.