#' @title Graphlet Correlation Matrix (GCM)
#'
#' @description Computes the Graphlet Correlation Matrix (GCM) of a network,
#' given as adjacency matrix.
#'
#' The GCM of a network is a matrix with Spearman's correlations between
#' the network's node orbits (Hocevar and Demsar,
#' 2016; Yaveroglu et al., 2014).
#'
#' The function considers only orbits for graphlets with up to four nodes.
#' Orbit counts are determined using the function \code{\link[orca]{count4}}
#' from \code{orca} package.
#'
#' Unobserved orbits would lead to NAs in the correlation matrix, which is
#' why a row with pseudo counts of 1 is added to the orbit count matrix
#' (\code{ocount}).
#'
#' The function is based on R code provided by Theresa Ullmann
#' (\url{https://orcid.org/0000-0003-1215-8561}).
#'
#' @param adja adjacency matrix (numeric) defining the network
#' for which the GCM should be calculated.
#' @param orbits numeric vector with integers from 0 to 14 defining the graphlet
#' orbits to use for GCM calculation. Minimum length is 2. Defaults to
#' c(0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11), thus excluding redundant orbits such
#' as the orbit o3.
#'
#' @details
#' By default, only the 11 non-redundant orbits are used. These are grouped
#' according to their role: orbit 0 represents the degree, orbits (2, 5, 7)
#' represent nodes within a chain, orbits (8, 10, 11) represent nodes in a
#' cycle, and orbits (6, 9, 4, 1) represent a terminal node.
#'
#' @return A list with the following elements:
#' \tabular{ll}{
#' \code{gcm}\tab Graphlet Correlation Matrix\cr
#' \code{ocount}\tab Orbit counts
#' }
#'
#' @examples
#' # Load data set from American Gut Project (from SpiecEasi package)
#' data("amgut1.filt")
#'
#' # Network construction
#' net <- netConstruct(amgut1.filt,
#' filtTax = "highestFreq",
#' filtTaxPar = list(highestFreq = 50),
#' measure = "pearson",
#' normMethod = "clr",
#' zeroMethod = "pseudoZO",
#' sparsMethod = "thresh",
#' thresh = 0.5)
#'
#' # Get adjacency matrices
#' adja <- net$adjaMat1
#'
#' # Network visualization
#' props <- netAnalyze(net)
#' plot(props, rmSingles = TRUE, cexLabels = 1.7)
#'
#' # Calculate Graphlet Correlation Matrix (GCM)
#' gcm <- calcGCM(adja)
#'
#' gcm
#'
#' # Plot heatmap of the GCM
#' plotHeat(gcm$gcm)
#'
#' @references
#' \insertRef{hocevar2016computation}{NetCoMi}\cr\cr
#' \insertRef{yaveroglu2014revealing}{NetCoMi}
#'
#' @seealso \code{\link{calcGCD}}, \code{\link{testGCM}}
#'
#' @importFrom orca count4
#'
#' @export
calcGCM <- function(adja,
orbits = c(0, 2, 5, 7, 8, 10, 11, 6, 9, 4, 1)) {
# Install missing packages
if (!"orca" %in% utils::installed.packages()[,"Package"]) {
message("Installing missing package: orca\n")
install.packages("orca", dependencies = TRUE)
}
if (!is.numeric(orbits)) {
stop("'orbits' vector must be numeric.")
}
if (length(orbits) < 2) {
stop("At least two orbits must be selected to compute the GCD.")
}
if (any(orbits < 0) | any(orbits > 14) | length(orbits) > 15) {
stop("Only orbits 0 to 14 (from 4-node graphlets) are allowed.")
}
if (!all(orbits %% 1 == 0)) {
stop("Elements of 'orbits' must be whole numbers.")
}
if (!nrow(adja) == ncol(adja)) {
stop("Numbers of rows and columns of 'adja' differ.",
"'adja' must be an adjacency matrix.")
}
# Get orbit counts
ocount <- .getOrbcounts(adja = adja, orbits = orbits)
# A pseudo count of 1 is added to all columns
# (to avoid NAs in the correlation matrix due to unobserved orbits)
pseudo <- rep(1, ncol(ocount))
# Pseudo count of 2 is used if all entries of an orb are 1 (no variation)
for (i in 1:ncol(ocount)) {
if (all(ocount[, i] == 1)) {
pseudo[i] <- 2
}
}
ocount <- rbind(ocount, pseudo)
# Compute Graphlet Correlation Matrix
gcm <- suppressWarnings(cor(ocount, method = "spearman"))
out <- list(gcm = gcm, ocount = ocount)
class(out) <- "GCM"
return(out)
}
#' @keywords internal
.getOrbcounts <- function(adja, orbits = 0:14) {
if (all(adja[lower.tri(adja)] == 0)) {
# Handle adjacency with only zero entries
ocounts <- matrix(0, nrow = 2, ncol = 15)
colnames(ocounts) <- paste0("O", 0:14)
} else {
net <- igraph::graph_from_adjacency_matrix(adja, weighted=T,
mode="undirected", diag=F)
edgelist <- igraph::get.edgelist(net, names = FALSE)
edgelist <- apply(edgelist, 2, as, Class = "integer")
# Transform into matrix if network consists of one edge only
if (is.vector(edgelist)) {
edgelist <- t(as.matrix(edgelist))
}
# Get orbit counts
ocounts <- orca::count4(edgelist)
}
# Select orbits of interest
orbits <- paste0("O", orbits)
ocounts <- ocounts[, orbits]
# Fill up count matrix so that nrow equals number of nodes
nnodes <- ncol(adja)
if (nrow(ocounts) < nnodes) {
ocounts <- rbind(ocounts, matrix(0, nrow = nnodes-nrow(ocounts),
ncol = ncol(ocounts)))
}
rownames(ocounts) <- rownames(adja)
return(ocounts)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.