#' @name rfCluster_col
#' @aliases 'rfCluster_col,BioData-method
#' @title rfCluster_col
#' @name rfCluster_col-methods
#' @docType methods
#' @description This fucntion uses the RFclust.SGE to create fandomForest based unsupervised clusters on a subset of the data.
#' @description Default is on 200 cells using all (provided) genes with 500 forests and 500 trees per forest for 5 repetitions.
#' @description You are asked to give a k numer of expected clusters (better too many than too little), classifies the total
#' @description data using the 5 different unsupervised runs and all cluster ids from these runs are merged into the final cluster id.
#' @description This <summaryCol> will be part of the return objects samples table, together with a <usefulCol> where
#' @description all clusters with less than 10 cells have been merged into the 'gr. 0'.
#' @description The final results will be reported as new columns in the samples table containing the 'name'
#' @param x the single cells ngs object
#' @param email your email to use together with the SGE option
#' @param SGE whether to use the sun grid engine to calculate the rf grouping
#' @param rep how many repetitions for the random forest grouping should be run (default = 1)
#' @param slice how many processes should be started for each random forest clustering (default = 4)
#' @param k the numer of expected clusters (better more than to view)
#' @param subset how many cells should be randomly selected for the unsupervised clustering (default = 200)
#' @param name if you want to run multiple RFclusterings on e.g. using different input genes you need to specify a name (default ='RFclust')
#' @param nforest the numer of forests to grow for each rep (defualt = 500)
#' @param ntree the numer of trees per forest (default = 500)
#' @param settings slurm settings list(A, t and p) which allow to run the rf clustering on a slurm backend
#' @param ids the ids for a subset of samples to be analyzed (default NULL)
#' @return a SingleCellsNGS object including the results and storing the RF object in the usedObj list (bestColname)
#' @export
if ( ! isGeneric('rfCluster_col') ){ methods::setGeneric('rfCluster_col',
function ( x, rep=1, SGE=F, email='none', k=16, slice=4,
subset=200,nforest=500, ntree=500, name='RFclust',
settings=list(), ids=NULL){
standardGeneric('rfCluster_col')
}
)
}else {
print ("Onload warn generic function 'rfCluster_col' already defined - no overloading here!")
}
setMethod('rfCluster_col', signature = c ('BioData'),
definition = function ( x, rep=1, SGE=F, email="none", k=16, slice=4,
subset=200 ,nforest=500, ntree=1000, name='RFclust',
settings=list(), ids=NULL) {
if ( rep > 1) {
lapply(1:rep, function(i) {
rfCluster_col(
x, rep=1, SGE=SGE, email=email,
k=k, slice=slice, subset=subset ,nforest=nforest,
ntree=ntree, name=paste(sep="_",name, i ), settings=settings, ids= ids )
} )
}
x$name <- stringr::str_replace_all( x$name, '\\s+', '_')
summaryCol=paste( 'All_groups', name,sep='_')
usefulCol=paste ('Usefull_groups',name, sep='_')
n= paste(x$name, name,sep='_')
m <- max(k)
OPATH <- file.path( x$outpath,stringr::str_replace( x$name, '\\s', '_'))
opath = file.path( OPATH,name,"RFclust.mp" )
if ( ! dir.exists(OPATH)){
dir.create( OPATH )
}
if ( ! dir.exists(file.path(OPATH, name )) ){
dir.create(file.path(OPATH, name ) )
}
if ( ! dir.exists(file.path(OPATH, name, "RFclust.mp")) ){
dir.create(file.path(OPATH, name,"RFclust.mp" ) )
}
processed = FALSE
single_res_col <- paste('RFgrouping',name)
i = 1
tname = paste(n,i,sep='_')
if ( is.null(x$usedObj[['rfExpressionSets']][[tname]]) ){
i <- length(x$usedObj$rfObj)+i
## start the calculations!
if ( dir.exists(opath)){
if ( opath == '' ) {
stop( "For security reasons you must provide an absolute tmp path - files in there will be deleted?")
}
system( paste('rm -f ',opath,"/*",tname,'*', sep='') )
}else {
dir.create( opath )
}
total <- ncol(x$dat)
if ( total-subset <= 20 && rep > 1) {
stop( paste( 'You have only', total, 'samples in this dataset and request to draw random',subset, "samples, which leaves less than 20 cells to draw on random!") )
}
else if ( total < subset ){
stop ( paste("You can not ask for more than the max of",total, "samples in the test dataset!") )
}
if ( is.null(x$usedObj[['rfExpressionSets']])){
x$usedObj[['rfExpressionSets']] <- list()
x$usedObj[['rfObj']][[ i ]] <- list()
}
if ( length( x$usedObj[['rfExpressionSets']] ) < i ) {
if ( ! is.null(ids) ) {
x$usedObj[['rfExpressionSets']][[ i ]] <-
reduceTo( x, what='col', to=colnames(x$dat)[ids], name=tname, copy=TRUE )
}else {
x$usedObj[['rfExpressionSets']][[ i ]] <-
reduceTo( x, what='col', to=colnames(x$dat)[sample(c(1:total),subset)], name=tname, copy=TRUE )
}
## here I need to get rid of the -1 values!
fit_4_rf(x$usedObj[['rfExpressionSets']][[ i ]], copy=F)
if ( length(settings) > 0 ) {
#browser()
x$usedObj[['rfObj']][[ i ]] <- RFclust.SGE::RFclust.SGE (
dat=x$usedObj[['rfExpressionSets']][[ i ]]$data(),
SGE=F, slices=slice, email=email, tmp.path=opath,
name= tname, settings=settings, slurm=T
)
}else {
x$usedObj[['rfObj']][[ i ]] <- RFclust.SGE::RFclust.SGE (
dat=x$usedObj[['rfExpressionSets']][[ i ]]$data(),
SGE=SGE, slices=slice, email=email, tmp.path=opath, name= tname
)
}
}
names(x$usedObj[['rfExpressionSets']]) [i] <- tname
names(x$usedObj[['rfObj']]) [i] <- tname
x$usedObj[['rfObj']][[ i ]] <- RFclust.SGE::runRFclust ( x$usedObj[['rfObj']][[ i ]] , nforest=nforest, ntree=ntree, name=tname )
if ( SGE){
print ( "You should wait some time now to let the calculation finish! check: system('qstat -f') -> re-run the function")
}
else {
print ( "You should wait some time now to let the calculation finish! -> re-run the function")
print ( "check: system( 'ps -Af | grep \"R.*BATCH\" | grep -v grep')")
}
}
else {
i <- match( tname,names(x$usedObj$rfObj) )
## read in the results
try ( x$usedObj[['rfObj']][[ i ]] <- runRFclust ( x$usedObj[['rfObj']][[ i]] , nforest=nforest, ntree=ntree, name=tname ) )
if ( ! is.null(x$usedObj[['rfObj']][[ i ]]@RFfiles[[tname]]) ){
stop( "please re-run this function later - the clustring process has not finished!")
}
for ( a in k ){
x$usedObj[["rfExpressionSets"]][[i]]$samples <-
x$usedObj[["rfExpressionSets"]][[i]]$samples[ ,
is.na(match ( colnames(x$usedObj[["rfExpressionSets"]][[i]]$samples), paste('group n=',a) ))==T
]
}
x <- createRFgrouping_col( x, RFname=tname, k=k, single_res_col = paste( single_res_col, i) )
print ( paste("Done with cluster",i))
processed = TRUE
}
gc()
invisible(x)
}
)
#' @name createRFgrouping_col
#' @aliases createRFgrouping_col,BioData-method
#' @rdname createRFgrouping_col-methods
#' @docType methods
#' @description Create a sample grouping data from one RFclust.SGE object
#' @param x the BioData object
#' @param RFname the name of the RFclust.SGE object in the BioData object. This object has to be populized with data!
#' @param k the number of wanted groups ( default = 10)
#' @param single_res_col the new column in the samples table default= paste('RFgrouping', RFname)
#' @param colFunc a function giving the colours back for the grouping (gets the amount of groups) default = function(x){rainbow(x)}
#' @title description of function createRFgrouping_col
#' @export
if ( ! isGeneric('createRFgrouping_col') ){ methods::setGeneric('createRFgrouping_col', ## Name
function ( x, RFname, k=10, single_res_col = paste('BioData',RFname), colFunc=NULL) {
standardGeneric('createRFgrouping_col')
}
)
}else {
print ("Onload warn generic function 'createRFgrouping_col' already defined - no overloading here!")
}
setMethod('createRFgrouping_col', signature = c ('BioData'),
definition = function ( x, RFname, k=10, single_res_col = paste('RFgrouping',RFname), colFunc=NULL) {
if ( is.na( match( RFname, names(x$usedObj[['rfObj']])))){
stop( paste("the RFname",RFname,"is not defined in this object; defined grouings are:",paste(names(x$usedObj[['rfObj']]), collapse=" ",sep=', ') ) )
}
groups <- RFclust.SGE::createGroups( x$usedObj[['rfObj']][[RFname]], k=k, name=RFname )
## store the MDS representation of the rfClust dissimilarity object
## in case all samples have been used to create the object.
if ( is.null (x$usedObj$MDS[[RFname]]) & nrow(x$usedObj$rfObj[[RFname]]@distRF[[RFname]]) == ncol(x$dat) ) {
a <- (x$usedObj$rfObj[[RFname]]@distRF[[RFname]])
d <- stats::cmdscale(a,3)
m <- match( colnames(x$dat), rownames(d) )
x$usedObj$MDS[[single_res_col]] <- d[m,]
}
x$usedObj[['rfExpressionSets']][[RFname]]$samples <-
cbind ( x$usedObj[['rfExpressionSets']][[RFname]]$samples, groups[,3:(2+length(k))] )
le <- ncol(x$usedObj[['rfExpressionSets']][[RFname]]$samples)
colnames(x$usedObj[['rfExpressionSets']][[RFname]]$samples)[(le-length(k)+1):le] <-
paste('group n=',k)
m <- max(k)
## create the predictive random forest object
browser()
if ( all.equal(sort( colnames(x$usedObj[['rfObj']][[RFname]]@dat) ), sort( colnames(x$dat) ) ) == TRUE ) {
## use the column in grouping
print ( "using the calcualted grouping")
mat <- match(colnames(x$dat), colnames(x$usedObj[['rfObj']][[RFname]]@dat))
for ( id in 1:length(k) ){
#browser()
x$samples[, paste( single_res_col, ' n=', k[id], sep="") ] = factor(groups[mat,2+id], levels=c(1:k[id]))
lapply( paste( single_res_col, ' n=', k[id], sep=""), function( n ) { colors_4(x,n) })
}
}else {
#predict based on the RFdata
print ( "predicting on the calculated grouping" )
RFobj <- bestGrouping( x$usedObj[['rfExpressionSets']][[RFname]], group=paste('group n=', m), bestColname = paste('OptimalGrouping',m ,RFname))
print( "rf predict")
x$samples[, paste( single_res_col) ] <- stats::predict( RFobj , t(as.matrix(x$data())) )
x$samples[, paste( single_res_col) ] <- factor( x$samples[, paste( single_res_col) ], levels= 1:m )
x <- colors_4( x, single_res_col )
}
invisible(x)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.