#' Main Function for SCCOMP Estimate
#'
#' @description
#' The `sccomp_estimate` function performs linear modeling on a table of cell counts or proportions,
#' which includes a cell-group identifier, sample identifier, abundance (counts or proportions), and factors
#' (continuous or discrete). The user can define a linear model using an R formula,
#' where the first factor is the factor of interest. Alternatively, `sccomp` accepts
#' single-cell data containers (e.g., Seurat, SingleCellExperiment, cell metadata, or
#' group-size) and derives the count data from cell metadata.
#'
#' @import dplyr
#' @importFrom magrittr %$%
#' @importFrom magrittr divide_by
#' @importFrom magrittr multiply_by
#' @importFrom magrittr equals
#' @importFrom rlang quo_is_null
#' @importFrom SingleCellExperiment colData
#' @importFrom parallel detectCores
#' @importFrom rlang inform
#' @importFrom lifecycle is_present
#' @importFrom lifecycle deprecate_warn
#'
#' @param .data A tibble including cell_group name column, sample name column,
#' abundance column (counts or proportions), and factor columns.
#' @param formula_composition A formula describing the model for differential abundance.
#' @param formula_variability A formula describing the model for differential variability.
#' @param .sample A column name as a symbol for the sample identifier.
#' @param .cell_group A column name as a symbol for the cell-group identifier.
#' @param .abundance A column name as a symbol for the cell-group abundance, which can be counts (> 0) or proportions (between 0 and 1, summing to 1 across `.cell_group`).
#' @param cores Number of cores to use for parallel calculations.
#' @param bimodal_mean_variability_association Logical, whether to model mean-variability as bimodal.
#' @param prior_mean A list specifying prior knowledge about the mean distribution, including intercept and coefficients.
#' @param prior_overdispersion_mean_association A list specifying prior knowledge about mean/variability association.
#' @param percent_false_positive A real number between 0 and 100 for outlier identification.
#' @param inference_method Character string specifying the inference method to use ('pathfinder', 'hmc', or 'variational').
#' @param .sample_cell_group_pairs_to_exclude A column name indicating sample/cell-group pairs to exclude.
#' @param output_directory A character string specifying the output directory for Stan draws.
#' @param verbose Logical, whether to print progression details.
#' @param enable_loo Logical, whether to enable model comparison using the LOO package.
#' @param noise_model A character string specifying the noise model (e.g., 'multi_beta_binomial').
#' @param exclude_priors Logical, whether to run a prior-free model.
#' @param use_data Logical, whether to run the model data-free.
#' @param mcmc_seed An integer seed for MCMC reproducibility.
#' @param max_sampling_iterations Integer to limit the maximum number of iterations for large datasets.
#' @param pass_fit Logical, whether to include the Stan fit as an attribute in the output.
#' @param .count **DEPRECATED**. Use `.abundance` instead.
#' @param approximate_posterior_inference **DEPRECATED**. Use `inference_method` instead.
#' @param variational_inference **DEPRECATED**. Use `inference_method` instead.
#' @param ... Additional arguments passed to the `cmdstanr::sample` function.
#'
#' @return A tibble (`tbl`) with the following columns:
#' \itemize{
#' \item cell_group - The cell groups being tested.
#' \item parameter - The parameter being estimated from the design matrix described by the input `formula_composition` and `formula_variability`.
#' \item factor - The covariate factor in the formula, if applicable (e.g., not present for Intercept or contrasts).
#' \item c_lower - Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
#' \item c_effect - Mean of the posterior distribution for a composition (c) parameter.
#' \item c_upper - Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.
#' \item c_pH0 - Probability of the null hypothesis (no difference) for a composition (c). This is not a p-value.
#' \item c_FDR - False-discovery rate of the null hypothesis for a composition (c).
#' \item c_n_eff - Effective sample size for a composition (c) parameter.
#' \item c_R_k_hat - R statistic for a composition (c) parameter, should be within 0.05 of 1.0.
#' \item v_lower - Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
#' \item v_effect - Mean of the posterior distribution for a variability (v) parameter.
#' \item v_upper - Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.
#' \item v_pH0 - Probability of the null hypothesis for a variability (v).
#' \item v_FDR - False-discovery rate of the null hypothesis for a variability (v).
#' \item v_n_eff - Effective sample size for a variability (v) parameter.
#' \item v_R_k_hat - R statistic for a variability (v) parameter.
#' \item count_data - Nested input count data.
#' }
#'
#' @examples
#'
#' message("Use the following example after having installed cmdstanr with install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists()) {
#' data("counts_obj")
#'
#' estimate <- sccomp_estimate(
#' counts_obj,
#' ~ type,
#' ~1,
#' sample,
#' cell_group,
#' abundance,
#' cores = 1
#' )
#' }
#' }
#'
#' @export
sccomp_estimate <- function(.data,
formula_composition = ~1,
formula_variability = ~1,
.sample,
.cell_group,
.abundance = NULL,
# Secondary arguments
cores = detectCores(),
bimodal_mean_variability_association = FALSE,
percent_false_positive = 5,
inference_method = "pathfinder",
prior_mean = list(intercept = c(0, 1), coefficients = c(0, 1)),
prior_overdispersion_mean_association = list(
intercept = c(5, 2),
slope = c(0, 0.6),
standard_deviation = c(10, 20)
),
.sample_cell_group_pairs_to_exclude = NULL,
output_directory = "sccomp_draws_files",
verbose = TRUE,
enable_loo = FALSE,
noise_model = "multi_beta_binomial",
exclude_priors = FALSE,
use_data = TRUE,
mcmc_seed = sample(1e5, 1),
max_sampling_iterations = 20000,
pass_fit = TRUE,
...,
# DEPRECATED
.count = NULL,
approximate_posterior_inference = NULL,
variational_inference = NULL) {
# rlang::inform(
# message = "sccomp says: From version 1.7.12 the logit fold change threshold for significance has been changed from 0.2 to 0.1.",
# .frequency = "once",
# .frequency_id = "new_logit_fold_change_threshold"
# )
# Run the function
check_and_install_cmdstanr()
UseMethod("sccomp_estimate", .data)
}
#' @export
sccomp_estimate.Seurat <- function(.data,
formula_composition = ~1,
formula_variability = ~1,
.sample,
.cell_group,
.abundance = NULL,
# Secondary arguments
cores = detectCores(),
bimodal_mean_variability_association = FALSE,
percent_false_positive = 5,
inference_method = "pathfinder",
prior_mean = list(intercept = c(0, 1), coefficients = c(0, 1)),
prior_overdispersion_mean_association = list(
intercept = c(5, 2),
slope = c(0, 0.6),
standard_deviation = c(10, 20)
),
.sample_cell_group_pairs_to_exclude = NULL,
output_directory = "sccomp_draws_files",
verbose = TRUE,
enable_loo = FALSE,
noise_model = "multi_beta_binomial",
exclude_priors = FALSE,
use_data = TRUE,
mcmc_seed = sample(1e5, 1),
max_sampling_iterations = 20000,
pass_fit = TRUE,
...,
# DEPRECATED
.count = NULL,
approximate_posterior_inference = NULL,
variational_inference = NULL) {
if (!is.null(.abundance))
stop("sccomp says: .abundance argument can be used only for data frame input")
if (!is.null(.count))
stop("sccomp says: .count argument can be used only for data frame input")
# DEPRECATION OF approximate_posterior_inference
if (lifecycle::is_present(approximate_posterior_inference) & !is.null(approximate_posterior_inference)) {
lifecycle::deprecate_warn("1.7.7", "sccomp::sccomp_estimate(approximate_posterior_inference = )", details = "The argument approximate_posterior_inference is now deprecated. Please use inference_method. By default, inference_method value is inferred from approximate_posterior_inference.")
inference_method <- ifelse(approximate_posterior_inference == "all", "variational", "hmc")
}
# DEPRECATION OF variational_inference
if (lifecycle::is_present(variational_inference) & !is.null(variational_inference)) {
lifecycle::deprecate_warn("1.7.11", "sccomp::sccomp_estimate(variational_inference = )", details = "The argument variational_inference is now deprecated. Please use inference_method. By default, inference_method value is inferred from variational_inference")
inference_method <- ifelse(variational_inference, "variational", "hmc")
}
# Prepare column names
.sample <- enquo(.sample)
.cell_group <- enquo(.cell_group)
.sample_cell_group_pairs_to_exclude <- enquo(.sample_cell_group_pairs_to_exclude)
.data[[]] %>%
sccomp_estimate(
formula_composition = formula_composition,
formula_variability = formula_variability,
!!.sample,
!!.cell_group,
# Secondary arguments
cores = cores,
bimodal_mean_variability_association = bimodal_mean_variability_association,
percent_false_positive = percent_false_positive,
inference_method = inference_method,
prior_mean = prior_mean,
prior_overdispersion_mean_association = prior_overdispersion_mean_association,
.sample_cell_group_pairs_to_exclude = !!.sample_cell_group_pairs_to_exclude,
output_directory = output_directory,
verbose = verbose,
enable_loo = enable_loo,
noise_model = noise_model,
exclude_priors = exclude_priors,
use_data = use_data,
mcmc_seed = mcmc_seed,
max_sampling_iterations = max_sampling_iterations,
pass_fit = pass_fit, ...
)
}
#' @export
sccomp_estimate.SingleCellExperiment <- function(.data,
formula_composition = ~1,
formula_variability = ~1,
.sample,
.cell_group,
.abundance = NULL,
# Secondary arguments
cores = detectCores(),
bimodal_mean_variability_association = FALSE,
percent_false_positive = 5,
inference_method = "pathfinder",
prior_mean = list(intercept = c(0, 1), coefficients = c(0, 1)),
prior_overdispersion_mean_association = list(
intercept = c(5, 2),
slope = c(0, 0.6),
standard_deviation = c(10, 20)
),
.sample_cell_group_pairs_to_exclude = NULL,
output_directory = "sccomp_draws_files",
verbose = TRUE,
enable_loo = FALSE,
noise_model = "multi_beta_binomial",
exclude_priors = FALSE,
use_data = TRUE,
mcmc_seed = sample(1e5, 1),
max_sampling_iterations = 20000,
pass_fit = TRUE,
...,
# DEPRECATED
.count = NULL,
approximate_posterior_inference = NULL,
variational_inference = NULL) {
if (!is.null(.abundance))
stop("sccomp says: .abundance argument can be used only for data frame input")
if (!is.null(.count))
stop("sccomp says: .count argument can be used only for data frame input")
# DEPRECATION OF approximate_posterior_inference
if (lifecycle::is_present(approximate_posterior_inference) & !is.null(approximate_posterior_inference)) {
lifecycle::deprecate_warn("1.7.7", "sccomp::sccomp_estimate(approximate_posterior_inference = )", details = "The argument approximate_posterior_inference is now deprecated. Please use inference_method. By default, inference_method value is inferred from approximate_posterior_inference.")
inference_method <- ifelse(approximate_posterior_inference == "all", "variational", "hmc")
}
# DEPRECATION OF variational_inference
if (lifecycle::is_present(variational_inference) & !is.null(variational_inference)) {
lifecycle::deprecate_warn("1.7.11", "sccomp::sccomp_estimate(variational_inference = )", details = "The argument variational_inference is now deprecated. Please use inference_method. By default, inference_method value is inferred from variational_inference")
inference_method <- ifelse(variational_inference, "variational", "hmc")
}
# Prepare column names
.sample <- enquo(.sample)
.cell_group <- enquo(.cell_group)
.sample_cell_group_pairs_to_exclude <- enquo(.sample_cell_group_pairs_to_exclude)
.data %>%
colData() %>%
sccomp_estimate(
formula_composition = formula_composition,
formula_variability = formula_variability,
!!.sample,
!!.cell_group,
# Secondary arguments
cores = cores,
bimodal_mean_variability_association = bimodal_mean_variability_association,
percent_false_positive = percent_false_positive,
inference_method = inference_method,
prior_mean = prior_mean,
prior_overdispersion_mean_association = prior_overdispersion_mean_association,
.sample_cell_group_pairs_to_exclude = !!.sample_cell_group_pairs_to_exclude,
output_directory = output_directory,
verbose = verbose,
enable_loo = enable_loo,
noise_model = noise_model,
exclude_priors = exclude_priors,
use_data = use_data,
mcmc_seed = mcmc_seed,
max_sampling_iterations = max_sampling_iterations,
pass_fit = pass_fit, ...
)
}
#' @export
sccomp_estimate.DFrame <- function(.data,
formula_composition = ~1,
formula_variability = ~1,
.sample,
.cell_group,
.abundance = NULL,
# Secondary arguments
cores = detectCores(),
bimodal_mean_variability_association = FALSE,
percent_false_positive = 5,
inference_method = "pathfinder",
prior_mean = list(intercept = c(0, 1), coefficients = c(0, 1)),
prior_overdispersion_mean_association = list(
intercept = c(5, 2),
slope = c(0, 0.6),
standard_deviation = c(10, 20)
),
.sample_cell_group_pairs_to_exclude = NULL,
output_directory = "sccomp_draws_files",
verbose = TRUE,
enable_loo = FALSE,
noise_model = "multi_beta_binomial",
exclude_priors = FALSE,
use_data = TRUE,
mcmc_seed = sample(1e5, 1),
max_sampling_iterations = 20000,
pass_fit = TRUE,
...,
# DEPRECATED
.count = NULL,
approximate_posterior_inference = NULL,
variational_inference = NULL) {
if (!is.null(.abundance))
stop("sccomp says: .abundance argument can be used only for data frame input")
if (!is.null(.count))
stop("sccomp says: .count argument can be used only for data frame input")
# Prepare column names
.sample <- enquo(.sample)
.cell_group <- enquo(.cell_group)
.abundance <- enquo(.abundance)
.sample_cell_group_pairs_to_exclude <- enquo(.sample_cell_group_pairs_to_exclude)
.data %>%
as.data.frame() %>%
sccomp_estimate(
formula_composition = formula_composition,
formula_variability = formula_variability,
!!.sample,
!!.cell_group,
.abundance = !!.abundance,
# Secondary arguments
cores = cores,
bimodal_mean_variability_association = bimodal_mean_variability_association,
percent_false_positive = percent_false_positive,
inference_method = inference_method,
prior_mean = prior_mean,
prior_overdispersion_mean_association = prior_overdispersion_mean_association,
.sample_cell_group_pairs_to_exclude = !!.sample_cell_group_pairs_to_exclude,
output_directory = output_directory,
verbose = verbose,
enable_loo = enable_loo,
noise_model = noise_model,
exclude_priors = exclude_priors,
use_data = use_data,
mcmc_seed = mcmc_seed,
max_sampling_iterations = max_sampling_iterations,
pass_fit = pass_fit, ...
)
}
#' @importFrom purrr when
#' @export
sccomp_estimate.data.frame <- function(.data,
formula_composition = ~1,
formula_variability = ~1,
.sample,
.cell_group,
.abundance = NULL,
# Secondary arguments
cores = detectCores(),
bimodal_mean_variability_association = FALSE,
percent_false_positive = 5,
inference_method = "pathfinder",
prior_mean = list(intercept = c(0, 1), coefficients = c(0, 1)),
prior_overdispersion_mean_association = list(
intercept = c(5, 2),
slope = c(0, 0.6),
standard_deviation = c(10, 20)
),
.sample_cell_group_pairs_to_exclude = NULL,
output_directory = "sccomp_draws_files",
verbose = TRUE,
enable_loo = FALSE,
noise_model = "multi_beta_binomial",
exclude_priors = FALSE,
use_data = TRUE,
mcmc_seed = sample(1e5, 1),
max_sampling_iterations = 20000,
pass_fit = TRUE,
...,
# DEPRECATED
.count = NULL,
approximate_posterior_inference = NULL,
variational_inference = NULL) {
# Prepare column names
.sample <- enquo(.sample)
.cell_group <- enquo(.cell_group)
.abundance <- enquo(.abundance)
.count <- enquo(.count)
.sample_cell_group_pairs_to_exclude <- enquo(.sample_cell_group_pairs_to_exclude)
# Deprecation of .count
if (rlang::quo_is_symbolic(.count)) {
rlang::warn("The argument '.count' is deprecated. Please use '.abundance' instead. This because now `sccomp` cam model both counts and proportions.")
.abundance <- .count
}
# DEPRECATION OF approximate_posterior_inference
if (lifecycle::is_present(approximate_posterior_inference) & !is.null(approximate_posterior_inference)) {
lifecycle::deprecate_warn("1.7.7", "sccomp::sccomp_estimate(approximate_posterior_inference = )", details = "The argument approximate_posterior_inference is now deprecated. Please use inference_method. By default, inference_method value is inferred from approximate_posterior_inference.")
inference_method <- ifelse(approximate_posterior_inference == "all", "variational", "hmc")
}
# DEPRECATION OF variational_inference
if (lifecycle::is_present(variational_inference) & !is.null(variational_inference)) {
lifecycle::deprecate_warn("1.7.11", "sccomp::sccomp_estimate(variational_inference = )", details = "The argument variational_inference is now deprecated. Please use inference_method. By default, inference_method value is inferred from variational_inference")
inference_method <- ifelse(variational_inference, "variational", "hmc")
}
if (quo_is_null(.abundance))
res <- sccomp_glm_data_frame_raw(
.data,
formula_composition = formula_composition,
formula_variability = formula_variability,
!!.sample,
!!.cell_group,
# Secondary arguments
cores = cores,
bimodal_mean_variability_association = bimodal_mean_variability_association,
percent_false_positive = percent_false_positive,
inference_method = inference_method,
prior_mean = prior_mean,
prior_overdispersion_mean_association = prior_overdispersion_mean_association,
.sample_cell_group_pairs_to_exclude = !!.sample_cell_group_pairs_to_exclude,
output_directory = output_directory,
verbose = verbose,
enable_loo = enable_loo,
exclude_priors = exclude_priors,
use_data = use_data,
mcmc_seed = mcmc_seed,
max_sampling_iterations = max_sampling_iterations,
pass_fit = pass_fit, ...
)
else
res = sccomp_glm_data_frame_counts(
.data,
formula_composition = formula_composition,
formula_variability = formula_variability,
!!.sample,
!!.cell_group,
.count = !!.abundance,
# Secondary arguments
cores = cores,
bimodal_mean_variability_association = bimodal_mean_variability_association,
percent_false_positive = percent_false_positive,
inference_method = inference_method,
prior_mean = prior_mean,
prior_overdispersion_mean_association = prior_overdispersion_mean_association,
.sample_cell_group_pairs_to_exclude = !!.sample_cell_group_pairs_to_exclude,
output_directory = output_directory,
verbose = verbose,
enable_loo = enable_loo,
exclude_priors = exclude_priors,
use_data = use_data,
mcmc_seed = mcmc_seed,
max_sampling_iterations = max_sampling_iterations,
pass_fit = pass_fit, ...
)
message("sccomp says: to do hypothesis testing run `sccomp_test()`,
the `test_composition_above_logit_fold_change` = 0.1 equates to a change of ~10%, and
0.7 equates to ~100% increase, if the baseline is ~0.1 proportion.
Use `sccomp_proportional_fold_change` to convert c_effect (linear) to proportion difference (non-linear).")
res %>%
# Track input parameters
add_attr(noise_model, "noise_model")
}
#' sccomp_remove_outliers main
#'
#' @description
#' The `sccomp_remove_outliers` function takes as input a table of cell counts with columns for cell-group identifier, sample identifier, integer count, and factors (continuous or discrete). The user can define a linear model using an input R formula, where the first factor is the factor of interest. Alternatively, `sccomp` accepts single-cell data containers (e.g., Seurat, SingleCellExperiment, cell metadata, or group-size) and derives the count data from cell metadata.
#'
#' @import dplyr
#' @importFrom magrittr %$% divide_by multiply_by equals
#' @importFrom rlang quo_is_null quo_is_symbolic inform
#' @importFrom SingleCellExperiment colData
#' @importFrom parallel detectCores
#' @importFrom tidyr unnest nest
#'
#' @param .estimate A tibble including a cell_group name column, sample name column, read counts column (optional depending on the input class), and factor columns.
#' @param percent_false_positive A real number between 0 and 100 (not inclusive), used to identify outliers with a specific false positive rate.
#' @param cores Integer, the number of cores to be used for parallel calculations.
#' @param inference_method Character string specifying the inference method to use ('pathfinder', 'hmc', or 'variational').
#' @param output_directory A character string specifying the output directory for Stan draws.
#' @param verbose Logical, whether to print progression details.
#' @param mcmc_seed Integer, used for Markov-chain Monte Carlo reproducibility. By default, a random number is sampled from 1 to 999999.
#' @param max_sampling_iterations Integer, limits the maximum number of iterations in case a large dataset is used, to limit computation time.
#' @param enable_loo Logical, whether to enable model comparison using the R package LOO. This is useful for comparing fits between models, similar to ANOVA.
#' @param approximate_posterior_inference DEPRECATED, use the `variational_inference` argument.
#' @param variational_inference Logical, whether to use variational Bayes for posterior inference. It is faster and convenient. Setting this argument to `FALSE` runs full Bayesian (Hamiltonian Monte Carlo) inference, which is slower but the gold standard.
#' @param ... Additional arguments passed to the `cmdstanr::sample` function.
#'
#' @return A tibble (`tbl`), with the following columns:
#' \itemize{
#' \item cell_group - The cell groups being tested.
#' \item parameter - The parameter being estimated from the design matrix described by the input formula_composition and formula_variability.
#' \item factor - The covariate factor in the formula, if applicable (e.g., not present for Intercept or contrasts).
#' \item c_lower - Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
#' \item c_effect - Mean of the posterior distribution for a composition (c) parameter.
#' \item c_upper - Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.
#' \item c_n_eff - Effective sample size, the number of independent draws in the sample. The higher, the better.
#' \item c_R_k_hat - R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0.
#' \item v_lower - Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
#' \item v_effect - Mean of the posterior distribution for a variability (v) parameter.
#' \item v_upper - Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.
#' \item v_n_eff - Effective sample size for a variability (v) parameter.
#' \item v_R_k_hat - R statistic for a variability (v) parameter, a measure of chain equilibrium.
#' \item count_data - Nested input count data.
#' }
#'
#' @examples
#'
#' message("Use the following example after having installed install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists()) {
#' data("counts_obj")
#'
#' estimate = sccomp_estimate(
#' counts_obj,
#' ~ type,
#' ~1,
#' sample,
#' cell_group,
#' count,
#' cores = 1
#' ) |>
#' sccomp_remove_outliers(cores = 1)
#' }
#' }
#'
#' @export
sccomp_remove_outliers <- function(.estimate,
percent_false_positive = 5,
cores = detectCores(),
inference_method = "pathfinder",
output_directory = "sccomp_draws_files",
verbose = TRUE,
mcmc_seed = sample(1e5, 1),
max_sampling_iterations = 20000,
enable_loo = FALSE,
# DEPRECATED
approximate_posterior_inference = NULL,
variational_inference = NULL,
...
) {
if(inference_method == "variational")
rlang::inform(
message = "sccomp says: From version 1.7.7 the model by default is fit with the variational inference method (inference_method = \"variational\"; much faster). For a full Bayesian inference (HMC method; the gold standard) use inference_method = \"hmc\".",
.frequency = "once",
.frequency_id = "variational_message"
)
# Run the function
check_and_install_cmdstanr()
UseMethod("sccomp_remove_outliers", .estimate)
}
#' @importFrom readr write_file
#' @export
sccomp_remove_outliers.sccomp_tbl = function(.estimate,
percent_false_positive = 5,
cores = detectCores(),
inference_method = "pathfinder",
output_directory = "sccomp_draws_files",
verbose = TRUE,
mcmc_seed = sample(1e5, 1),
max_sampling_iterations = 20000,
enable_loo = FALSE,
# DEPRECATED
approximate_posterior_inference = NULL,
variational_inference = NULL,
...
) {
# DEPRECATION OF approximate_posterior_inference
if (is_present(approximate_posterior_inference) & !is.null(approximate_posterior_inference)) {
deprecate_warn("1.7.7", "sccomp::sccomp_estimate(approximate_posterior_inference = )", details = "The argument approximate_posterior_inference is now deprecated please use variational_inference. By default variational_inference value is inferred from approximate_posterior_inference.")
inference_method = ifelse(approximate_posterior_inference == "all", "variational","hmc")
}
# DEPRECATION OF variational_inference
if (is_present(variational_inference) & !is.null(variational_inference)) {
deprecate_warn("1.7.11", "sccomp::sccomp_estimate(variational_inference = )", details = "The argument variational_inference is now deprecated please use inference_method. By default inference_method value is inferred from variational_inference")
inference_method = ifelse(variational_inference, "variational","hmc")
}
# Prepare column same enquo
.sample = .estimate |> attr(".sample")
.cell_group = .estimate |> attr(".cell_group")
.count = .estimate |> attr(".count")
.sample_cell_group_pairs_to_exclude = .estimate |> attr(".sample_cell_group_pairs_to_exclude")
# Formulae
formula_composition = .estimate |> attr("formula_composition")
formula_variability = .estimate |> attr("formula_variability")
noise_model = .estimate |> attr("noise_model")
# Get model input
data_for_model = .estimate |> attr("model_input")
# Credible interval
CI = 1 - (percent_false_positive/100)
# Count data
.data =
.estimate |>
select(!!.cell_group, count_data) |>
unnest(count_data) |>
distinct() |>
# Drop previous outlier estimation for the new one
select(-any_of(c(
".lower" , ".median" , ".upper" , "Rhat" , "truncation_down" ,
"truncation_up" , "outlier" , "contains_outliers"
)))
# Random intercept
random_effect_elements = .estimate |> attr("formula_composition") |> parse_formula_random_effect()
# Load model
mod_rng = load_model("glm_multi_beta_binomial_generate_data", threads = cores)
rng = mod_rng |> sample_safe(
generate_quantities_fx,
attr(.estimate , "fit")$draws(format = "matrix"),
# This is for the new data generation with selected factors to do adjustment
data =
.estimate |>
attr("model_input") |>
c(list(
# Add subset of coefficients
X_original = data_for_model$X,
N_original = data_for_model$N,
length_X_which = ncol(data_for_model$X),
length_XA_which = ncol(data_for_model$XA),
X_which = seq_len(ncol(data_for_model$X)) |> as.array(),
XA_which = seq_len(ncol(data_for_model$Xa)) |> as.array(),
# Random intercept
ncol_X_random_eff_new = ncol(data_for_model$X_random_effect) |> c(ncol(data_for_model$X_random_effect_2) ), # I could put this in the intial data
length_X_random_effect_which = ncol(data_for_model$X_random_effect) |> c(ncol(data_for_model$X_random_effect_2)),
X_random_effect_which = seq_len(ncol(data_for_model$X_random_effect)) |> as.array(),
# Random intercept DUPLICATED
X_random_effect_which_2 = seq_len(ncol(data_for_model$X_random_effect)) |> as.array(),
create_intercept = FALSE
)),
parallel_chains = ifelse(data_for_model$is_vb, 1, attr(.estimate , "fit")$num_chains()),
threads_per_chain = cores
)
# Free memory
rm(.estimate)
# Detect outliers
truncation_df =
.data %>%
left_join(
summary_to_tibble(rng, "counts", "N", "M", probs = c(0.05, 0.95)) %>%
nest(data = -N) %>%
mutate(!!.sample := rownames(data_for_model$X)) %>%
unnest(data) %>%
nest(data = -M) %>%
mutate(!!.cell_group := colnames(data_for_model$y)) %>%
unnest(data) ,
by = c(quo_name(.sample), quo_name(.cell_group))
) %>%
# Add truncation
mutate( truncation_down = `5%`, truncation_up = `95%`) %>%
# Add outlier stats
mutate( outlier = !(!!.count >= `5%` & !!.count <= `95%`) ) %>%
nest(data = -M) %>%
mutate(contains_outliers = map_lgl(data, ~ .x %>% filter(outlier) %>% nrow() %>% `>` (0))) %>%
unnest(data) %>%
mutate(
truncation_down = case_when( outlier ~ -1, TRUE ~ truncation_down),
truncation_up = case_when(outlier ~ -1, TRUE ~ truncation_up),
)
# Add censoring
data_for_model$is_truncated = 1
data_for_model$truncation_up = truncation_df %>% select(N, M, truncation_up) %>% spread(M, truncation_up) %>% as_matrix(rownames = "N") %>% apply(2, as.integer)
data_for_model$truncation_down = truncation_df %>% select(N, M, truncation_down) %>% spread(M, truncation_down) %>% as_matrix(rownames = "N") %>% apply(2, as.integer)
data_for_model$truncation_not_idx =
(data_for_model$truncation_down >= 0) %>%
t() %>%
as.vector() %>%
which() |>
intersect(data_for_model$user_forced_truncation_not_idx) |>
sort()
data_for_model$TNS = length(data_for_model$truncation_not_idx)
data_for_model$truncation_not_idx_minimal =
truncation_df %>%
select(N, M, truncation_down) %>%
spread(M, truncation_down) %>%
mutate(row = row_number()) %>%
pivot_longer(
cols = -c(N, row),
names_to = "columns",
values_to = "value"
) %>%
filter(value == -1) %>%
select(row, columns) %>%
mutate(columns = as.integer(columns)) |>
as.matrix()
data_for_model$TNIM = nrow(data_for_model$truncation_not_idx_minimal)
message("sccomp says: outlier identification - step 1/2")
my_quantile_step_2 = 1 - (0.1 / data_for_model$N)
# This step gets the credible interval to control for within-category false positive rate
# We want a category-wise false positive rate of 0.1, and we have to correct for how many samples we have in each category
CI_step_2 = (1-my_quantile_step_2) / 2 * 2
fit2 =
data_for_model %>%
fit_model(
"glm_multi_beta_binomial",
cores = cores,
quantile = my_quantile_step_2,
inference_method = inference_method,
output_directory = output_directory,
verbose = verbose,
seed = mcmc_seed,
max_sampling_iterations = max_sampling_iterations,
pars = c("beta", "alpha", "prec_coeff", "prec_sd", "alpha_normalised", "random_effect", "random_effect_2"),
...
)
rng2 = mod_rng |> sample_safe(
generate_quantities_fx,
fit2$draws(format = "matrix"),
# This is for the new data generation with selected factors to do adjustment
data = data_for_model |> c(list(
# Add subset of coefficients
X_original = data_for_model$X,
N_original = data_for_model$N,
length_X_which = ncol(data_for_model$X),
length_XA_which = ncol(data_for_model$XA),
X_which = seq_len(ncol(data_for_model$X)) |> as.array(),
XA_which = seq_len(ncol(data_for_model$Xa)) |> as.array(),
# Random intercept
ncol_X_random_eff_new = ncol(data_for_model$X_random_effect) |> c(ncol(data_for_model$X_random_effect_2) ), # I could put this in the intial data
length_X_random_effect_which = ncol(data_for_model$X_random_effect) |> c(ncol(data_for_model$X_random_effect_2)),
X_random_effect_which = seq_len(ncol(data_for_model$X_random_effect)) |> as.array(),
# Random intercept DUPLICATED
X_random_effect_which_2 = seq_len(ncol(data_for_model$X_random_effect)) |> as.array(),
create_intercept = FALSE
)),
parallel_chains = ifelse(data_for_model$is_vb, 1, fit2$num_chains()),
threads_per_chain = cores
)
rng2_summary =
summary_to_tibble(rng2, "counts", "N", "M", probs = c(CI_step_2, 0.5, 1-CI_step_2))
column_quantile_names = rng2_summary |> colnames() |> str_subset("\\%") |> _[c(1,3)]
rng2_summary =
rng2_summary %>%
# !!! THIS COMMAND RELIES ON POSITION BECAUSE IT'S NOT TRIVIAL TO MATCH
# !!! COLUMN NAMES BASED ON LIMITED PRECISION AND/OR PERIODICAL QUANTILES
rename(
.lower := !!as.symbol(column_quantile_names[1]) ,
.median = `50%`,
.upper := !!as.symbol(column_quantile_names[2])
) %>%
nest(data = -N) %>%
mutate(!!.sample := rownames(data_for_model$X)) %>%
unnest(data) %>%
nest(data = -M) %>%
mutate(!!.cell_group := colnames(data_for_model$y)) %>%
unnest(data)
# Detect outliers
truncation_df2 =
.data %>%
left_join(rng2_summary,
by = c(quo_name(.sample), quo_name(.cell_group))
) %>%
# Add truncation
mutate( truncation_down = .lower, truncation_up = .upper) %>%
# Add outlier stats
mutate( outlier = !(!!.count >= .lower & !!.count <= .upper) ) %>%
nest(data = -M) %>%
mutate(contains_outliers = map_lgl(data, ~ .x %>% filter(outlier) %>% nrow() %>% `>` (0))) %>%
unnest(data) %>%
mutate(
truncation_down = case_when( outlier ~ -1, TRUE ~ truncation_down),
truncation_up = case_when(outlier ~ -1, TRUE ~ truncation_up)
)
data_for_model$truncation_up = truncation_df2 %>% select(N, M, truncation_up) %>% spread(M, truncation_up) %>% as_matrix(rownames = "N") %>% apply(2, as.integer)
data_for_model$truncation_down = truncation_df2 %>% select(N, M, truncation_down) %>% spread(M, truncation_down) %>% as_matrix(rownames = "N") %>% apply(2, as.integer)
data_for_model$truncation_not_idx =
(data_for_model$truncation_down >= 0) %>%
t() %>%
as.vector() %>%
which() |>
intersect(data_for_model$user_forced_truncation_not_idx) |>
sort()
data_for_model$TNS = length(data_for_model$truncation_not_idx)
# LOO
data_for_model$enable_loo = TRUE & enable_loo
message("sccomp says: outlier-free model fitting - step 2/2")
# Print design matrix
message(sprintf("sccomp says: the composition design matrix has columns: %s", data_for_model$X %>% colnames %>% paste(collapse=", ")))
message(sprintf("sccomp says: the variability design matrix has columns: %s", data_for_model$Xa %>% colnames %>% paste(collapse=", ")))
fit3 =
data_for_model %>%
# Run the first discovery phase with permissive false discovery rate
fit_model(
"glm_multi_beta_binomial",
cores = cores,
quantile = CI,
inference_method = inference_method,
output_directory = output_directory,
verbose = verbose,
seed = mcmc_seed,
max_sampling_iterations = max_sampling_iterations,
pars = c("beta", "alpha", "prec_coeff","prec_sd", "alpha_normalised", "random_effect", "random_effect_2", "log_lik"),
...
)
# Create a dummy tibble
tibble() |>
# Attach association mean concentration
add_attr(fit3, "fit") %>%
add_attr(data_for_model, "model_input") |>
add_attr(truncation_df2, "truncation_df2") |>
add_attr(.sample, ".sample") |>
add_attr(.cell_group, ".cell_group") |>
add_attr(.count, ".count") |>
add_attr(formula_composition, "formula_composition") |>
add_attr(formula_variability, "formula_variability") |>
add_attr(parse_formula(formula_composition), "factors" ) |>
# Add class to the tbl
add_class("sccomp_tbl") |>
# Print estimates
sccomp_test() |>
# drop hypothesis testing as the estimation exists without probabilities.
# For hypothesis testing use sccomp_test
select(-contains("_FDR"), -contains("_pH0")) |>
add_attr(noise_model, "noise_model")
}
#' sccomp_test
#'
#' @description This function test contrasts from a sccomp result.
#'
#'
#' @param .data A tibble. The result of sccomp_estimate.
#' @param contrasts A vector of character strings. For example if your formula is `~ 0 + treatment` and the factor treatment has values `yes` and `no`, your contrast could be "constrasts = c(treatmentyes - treatmentno)".
#' @param percent_false_positive A real between 0 and 100 non included. This used to identify outliers with a specific false positive rate.
#' @param test_composition_above_logit_fold_change A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.
#' @param pass_fit A boolean. Whether to pass the Stan fit as attribute in the output. Because the Stan fit can be very large, setting this to FALSE can be used to lower the memory imprint to save the output.
#'
#' @return A tibble (`tbl`), with the following columns:
#' \itemize{
#' \item cell_group - The cell groups being tested.
#' \item parameter - The parameter being estimated from the design matrix described by the input formula_composition and formula_variability.
#' \item factor - The covariate factor in the formula, if applicable (e.g., not present for Intercept or contrasts).
#' \item c_lower - Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
#' \item c_effect - Mean of the posterior distribution for a composition (c) parameter.
#' \item c_upper - Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.
#' \item c_pH0 - Probability of the c_effect being smaller or bigger than the `test_composition_above_logit_fold_change` argument.
#' \item c_FDR - False discovery rate of the c_effect being smaller or bigger than the `test_composition_above_logit_fold_change` argument. False discovery rate for Bayesian models is calculated differently from frequentists models, as detailed in Mangiola et al, PNAS 2023.
#' \item c_n_eff - Effective sample size, the number of independent draws in the sample. The higher, the better.
#' \item c_R_k_hat - R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0.
#' \item v_lower - Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
#' \item v_effect - Mean of the posterior distribution for a variability (v) parameter.
#' \item v_upper - Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.
#' \item v_pH0 - Probability of the v_effect being smaller or bigger than the `test_composition_above_logit_fold_change` argument.
#' \item v_FDR - False discovery rate of the v_effect being smaller or bigger than the `test_composition_above_logit_fold_change` argument. False discovery rate for Bayesian models is calculated differently from frequentists models, as detailed in Mangiola et al, PNAS 2023.
#' \item v_n_eff - Effective sample size for a variability (v) parameter.
#' \item v_R_k_hat - R statistic for a variability (v) parameter, a measure of chain equilibrium.
#' \item count_data - Nested input count data.
#' }#'
#' @export
#'
#' @examples
#'
#' message("Use the following example after having installed install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists()) {
#' data("counts_obj")
#'
#' estimates = sccomp_estimate(
#' counts_obj,
#' ~ 0 + type, ~1, sample, cell_group, count,
#' cores = 1
#' ) |>
#' sccomp_test("typecancer - typebenign")
#' }
#' }
#'
sccomp_test <- function(.data,
contrasts = NULL,
percent_false_positive = 5,
test_composition_above_logit_fold_change = 0.1,
pass_fit = TRUE) {
# Run the function
check_and_install_cmdstanr()
UseMethod("sccomp_test", .data)
}
#'
#' @importFrom dplyr any_of
#'
#' @export
#'
#'
sccomp_test.sccomp_tbl = function(.data,
contrasts = NULL,
percent_false_positive = 5,
test_composition_above_logit_fold_change = 0.1,
pass_fit = TRUE){
.sample = .data |> attr(".sample")
.cell_group = .data |> attr(".cell_group")
.count = .data |> attr(".count")
model_input = .data |> attr("model_input")
truncation_df2 = .data |> attr("truncation_df2")
# Abundance
abundance_CI =
get_abundance_contrast_draws(.data, contrasts)
# If my contrasts do not match my model. I have to do something more elegant.
if ("parameter" %in% colnames(abundance_CI))
abundance_CI =
abundance_CI |>
draws_to_statistics(
percent_false_positive/100,
test_composition_above_logit_fold_change,
!!.cell_group,
"c_"
)
variability_CI =
get_variability_contrast_draws(.data, contrasts)
# Variability
if ("parameter" %in% colnames(variability_CI))
variability_CI =
variability_CI |>
draws_to_statistics(
percent_false_positive / 100,
test_composition_above_logit_fold_change,
!!.cell_group,
"v_"
)
# If I don't have factors (~1)
if (!"factor" %in% colnames(model_input$factor_parameter_dictionary))
factor_parameter_dictionary = tibble(`factor` = character(), design_matrix_col = character())
else
factor_parameter_dictionary =
model_input$factor_parameter_dictionary |>
select(`factor`, design_matrix_col)
# Merge and parse
result =
abundance_CI |>
# Add ALPHA
left_join(variability_CI) |>
suppressMessages() |>
# Add easy to understand factor labels
left_join(factor_parameter_dictionary,
by = c("parameter" = "design_matrix_col")) %>%
select(parameter, `factor`, everything()) %>%
select(!!.cell_group, everything(),-M)
result =
result |>
left_join(
truncation_df2 |>
select(-any_of(c(
"M",
"N",
".variable",
"mean",
"se_mean",
"sd",
"n_eff",
"R_hat",
"k_hat",
"Rhat",
".lower", ".median", ".upper"
))) |>
nest(count_data = -!!.cell_group),
by = quo_name(.cell_group)
)
result =
result |>
# Add back attributes
add_attr(
.data |> attr("fit") |> get_mean_precision_association(),
"mean_concentration_association"
)
if(pass_fit)
result =
result |>
add_attr(.data |> attr("fit") , "fit")
result |>
# TEMPORARILY DROPPING KHAT
select(-contains("n_eff"), -contains("_hat")) |>
add_attr(test_composition_above_logit_fold_change, "test_composition_above_logit_fold_change") |>
# Attach association mean concentration
add_attr(.data |> attr("model_input") , "model_input") |>
add_attr(.data |> attr("truncation_df2"), "truncation_df2") |>
add_attr(.data |> attr("noise_model") , "noise_model") |>
add_attr(.sample, ".sample") |>
add_attr(.cell_group, ".cell_group") |>
add_attr(.count, ".count") |>
add_attr(.data |> attr("formula_composition"), "formula_composition") |>
add_attr(.data |> attr("formula_variability"), "formula_variability") |>
# Add class to the tbl
add_class("sccomp_tbl")
}
#' sccomp_replicate
#'
#' @description This function replicates counts from a real-world dataset.
#'
#'
#' @param fit The result of sccomp_estimate.
#' @param formula_composition A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.
#' @param formula_variability A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large anount of data is needed to define variability depending to each factors. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.
#' @param number_of_draws An integer. How may copies of the data you want to draw from the model joint posterior distribution.
#' @param mcmc_seed An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()
#'
#' @return A tibble `tbl` with cell_group-wise statistics
#'
#' @return A tibble (`tbl`), with the following columns:
#' \itemize{
#' \item \strong{cell_group} - A character column representing the cell group being tested.
#' \item \strong{sample} - A factor column representing the sample name from which data was generated.
#' \item \strong{generated_proportions} - A numeric column representing the proportions generated from the model.
#' \item \strong{generated_counts} - An integer column representing the counts generated from the model.
#' \item \strong{replicate} - An integer column representing the replicate number, where each row corresponds to a different replicate of the data.
#' }
#'
#' @export
#'
#' @examples
#'
#' message("Use the following example after having installed install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists() && .Platform$OS.type == "unix") {
#' data("counts_obj")
#'
#' sccomp_estimate(
#' counts_obj,
#' ~ type, ~1, sample, cell_group, count,
#' cores = 1
#' ) |>
#' sccomp_replicate()
#' }
#' }
sccomp_replicate <- function(fit,
formula_composition = NULL,
formula_variability = NULL,
number_of_draws = 1,
mcmc_seed = sample(1e5, 1)) {
# Run the function
check_and_install_cmdstanr()
UseMethod("sccomp_replicate", fit)
}
#' @export
#'
sccomp_replicate.sccomp_tbl = function(fit,
formula_composition = NULL,
formula_variability = NULL,
number_of_draws = 1,
mcmc_seed = sample(1e5, 1)){
.sample = attr(fit, ".sample")
.cell_group = attr(fit, ".cell_group")
sample_names =
fit |>
select(count_data) |>
unnest(count_data) |>
distinct(!!.sample) |>
pull(!!.sample)
rng =
replicate_data(
fit,
formula_composition = formula_composition,
formula_variability = formula_variability,
number_of_draws = number_of_draws,
mcmc_seed = mcmc_seed
)
model_input = attr(fit, "model_input")
# mean generated
rng |>
# Parse
parse_generated_quantities(number_of_draws = number_of_draws) %>%
# Get sample name
nest(data = -N) %>%
arrange(N) %>%
mutate(!!.sample := sample_names) %>%
unnest(data) %>%
# get cell type name
nest(data = -M) %>%
mutate(!!.cell_group := colnames(model_input$y)) %>%
unnest(data) %>%
select(-N, -M) |>
select(!!.cell_group, !!.sample, everything())
}
#' sccomp_predict
#'
#' @description This function replicates counts from a real-world dataset.
#'
#'
#' @param fit The result of sccomp_estimate.
#' @param formula_composition A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.
#' @param new_data A sample-wise data frame including the column that represent the factors in your formula. If you want to predict proportions for 10 samples, there should be 10 rows. T
#' @param number_of_draws An integer. How may copies of the data you want to draw from the model joint posterior distribution.
#' @param mcmc_seed An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()
#' @param summary_instead_of_draws Return the summary values (i.e. mean and quantiles) of the predicted proportions, or return single draws. Single draws can be helful to better analyse the uncertainty of the prediction.
#'
#' @return A tibble (`tbl`) with the following columns:
#' \itemize{
#' \item \strong{cell_group} - A character column representing the cell group being tested.
#' \item \strong{sample} - A factor column representing the sample name for which the predictions are made.
#' \item \strong{proportion_mean} - A numeric column representing the predicted mean proportions from the model.
#' \item \strong{proportion_lower} - A numeric column representing the lower bound (2.5%) of the 95% credible interval for the predicted proportions.
#' \item \strong{proportion_upper} - A numeric column representing the upper bound (97.5%) of the 95% credible interval for the predicted proportions.
#' }
#'
#' @export
#'
#' @examples
#'
#' message("Use the following example after having installed install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists() && .Platform$OS.type == "unix") {
#' data("counts_obj")
#'
#' sccomp_estimate(
#' counts_obj,
#' ~ type, ~1, sample, cell_group, count,
#' cores = 1
#' ) |>
#' sccomp_predict()
#' }
#' }
#'
#'
sccomp_predict <- function(fit,
formula_composition = NULL,
new_data = NULL,
number_of_draws = 500,
mcmc_seed = sample(1e5, 1),
summary_instead_of_draws = TRUE) {
# Run the function
check_and_install_cmdstanr()
UseMethod("sccomp_predict", fit)
}
#' @export
#'
sccomp_predict.sccomp_tbl = function(fit,
formula_composition = NULL,
new_data = NULL,
number_of_draws = 500,
mcmc_seed = sample(1e5, 1),
summary_instead_of_draws = TRUE){
model_input = attr(fit, "model_input")
.sample = attr(fit, ".sample")
.cell_group = attr(fit, ".cell_group")
rng =
replicate_data(
fit,
formula_composition = formula_composition,
formula_variability = ~ 1,
new_data = new_data,
number_of_draws = number_of_draws,
mcmc_seed = mcmc_seed
)
# New data
if(new_data |> is.null())
new_data =
fit |>
select(count_data) |>
unnest(count_data) |>
distinct() |>
.subset(!!.sample)
# If seurat
else if(new_data |> is("Seurat"))
new_data = new_data[[]]
sample_names =
new_data |>
distinct(!!.sample) |>
pull(!!.sample)
# mean generated
if(summary_instead_of_draws)
prediction_df =
rng |>
summary_to_tibble("mu", "M", "N") |>
select(M, N, proportion_mean = mean, proportion_lower = `2.5%`, proportion_upper = `97.5%`)
else
prediction_df =
rng |>
draws_to_tibble_x_y("mu", "M", "N") |>
select(M, N, proportion = .value, .draw)
prediction_df =
prediction_df |>
# Get sample name
nest(data = -N) %>%
arrange(N) %>%
mutate(!!.sample := sample_names) %>%
unnest(data) %>%
# get cell type name
nest(data = -M) %>%
mutate(!!.cell_group := colnames(model_input$y)) %>%
unnest(data) %>%
select(-N, -M) |>
select(!!.cell_group, !!.sample, everything())
new_data |>
left_join(prediction_df, by = join_by(!!.sample))
}
#' Calculate Residuals Between Observed and Predicted Proportions
#'
#' @description
#' `sccomp_calculate_residuals` computes the residuals between observed cell group proportions and the predicted proportions from a fitted `sccomp` model. This function is useful for assessing model fit and identifying cell groups or samples where the model may not adequately capture the observed data. The residuals are calculated as the difference between the observed proportions and the predicted mean proportions from the model.
#'
#' @param .data A tibble of class `sccomp_tbl`, which is the result of `sccomp_estimate()`. This tibble contains the fitted model and associated data necessary for calculating residuals.
#'
#' @return A tibble (`tbl`) with the following columns:
#' \itemize{
#' \item \strong{sample} - A character column representing the sample identifiers.
#' \item \strong{cell_group} - A character column representing the cell group identifiers.
#' \item \strong{residuals} - A numeric column representing the residuals, calculated as the difference between observed and predicted proportions.
#' \item \strong{exposure} - A numeric column representing the total counts (sum of counts across cell groups) for each sample.
#' }
#'
#' @details
#' The function performs the following steps:
#' \enumerate{
#' \item Extracts the predicted mean proportions for each cell group and sample using `sccomp_predict()`.
#' \item Calculates the observed proportions from the original count data.
#' \item Computes residuals by subtracting the predicted proportions from the observed proportions.
#' \item Returns a tibble containing the sample, cell group, residuals, and exposure (total counts per sample).
#' }
#'
#' @importFrom dplyr %>%
#' @importFrom dplyr select
#' @importFrom dplyr mutate
#' @importFrom dplyr left_join
#' @importFrom dplyr distinct
#' @importFrom dplyr with_groups
#' @importFrom tidyr pivot_longer
#' @importFrom tibble as_tibble
#' @importFrom magrittr %$%
#' @importFrom sccomp sccomp_predict
#'
#' @export
#'
#' @examples
#' \donttest{
#' if (instantiate::stan_cmdstan_exists() && .Platform$OS.type == "unix") {
#' # Load example data
#' data("counts_obj")
#'
#' # Fit the sccomp model
#' estimates <- sccomp_estimate(
#' counts_obj,
#' formula_composition = ~ type,
#' formula_variability = ~1,
#' .sample = sample,
#' .cell_group = cell_group,
#' .count = count,
#' approximate_posterior_inference = "all",
#' cores = 1
#' )
#'
#' # Calculate residuals
#' residuals <- sccomp_calculate_residuals(estimates)
#'
#' # View the residuals
#' print(residuals)
#' }}
#'
sccomp_calculate_residuals <- function(.data) {
UseMethod("sccomp_calculate_residuals", .data)
}
#' @export
#'
sccomp_calculate_residuals.sccomp_tbl = function(.data){
model_input = attr(.data, "model_input")
.sample = attr(.data, ".sample")
.cell_group = attr(.data, ".cell_group")
.grouping_for_random_intercept = attr(.data, ".grouping_for_random_intercept")
.count = attr(.data, ".count")
# Residuals
residual =
.data |>
sccomp_predict(
number_of_draws =
.data |>
attr("fit") |>
dim() |>
_[1] |>
min(500)
) |>
distinct(!!.sample, !!.cell_group, proportion_mean)
if(.data |> attr("model_input") %$% is_proportion)
y = .data |> attr("model_input") %$% y_proportion
else
y = .data |> attr("model_input") %$% y
y =
y |>
as_tibble(rownames = quo_name(.sample)) |>
pivot_longer(-!!.sample, names_to = quo_name(.cell_group), values_to = quo_name(.count)) |>
with_groups(!!.sample, ~ .x |> mutate(observed_proportion := !!.count / sum(!!.count ))) |>
with_groups(!!.sample, ~ .x |> mutate(exposure := sum(!!.count)) )
residual |>
left_join(
y,
by = c(quo_name(.sample), quo_name(.cell_group))
) |>
mutate(residuals = observed_proportion - proportion_mean) |>
select(!!.sample, !!.cell_group, residuals, exposure)
}
#' sccomp_remove_unwanted_variation
#'
#' @description This function uses the model to remove unwanted variation from a dataset using the estimates of the model. For example, if you fit your data with the formula `~ factor_1 + factor_2` and use the formula `~ factor_1` to remove unwanted variation, the `factor_2` effect will be factored out.
#'
#' @param .data A tibble. The result of `sccomp_estimate`.
#' @param formula_composition_keep A formula. The formula describing the model for differential abundance, for example `~type`. In this case, only the effect of the `type` factor will be preserved, while all other factors will be factored out.
#' @param formula_composition DEPRECATED. Use `formula_composition_keep` instead.
#' @param formula_variability DEPRECATED. Use `formula_variability_keep` instead.
#' @param cores Integer, the number of cores to be used for parallel calculations.
#'
#' @return A tibble (`tbl`) with the following columns:
#' \itemize{
#' \item \strong{sample} - A character column representing the sample name for which data was adjusted.
#' \item \strong{cell_group} - A character column representing the cell group being tested.
#' \item \strong{adjusted_proportion} - A numeric column representing the adjusted proportion after removing unwanted variation.
#' \item \strong{adjusted_counts} - A numeric column representing the adjusted counts after removing unwanted variation.
#' \item \strong{logit_residuals} - A numeric column representing the logit residuals calculated after adjustment.
#' }
#'
#' @export
#'
#' @examples
#'
#' message("Use the following example after having installed cmdstanr with install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists()) {
#' data("counts_obj")
#'
#' estimates = sccomp_estimate(
#' counts_obj,
#' ~ type, ~1, sample, cell_group, count,
#' cores = 1
#' ) |>
#' sccomp_remove_unwanted_variation()
#' }
#' }
#'
sccomp_remove_unwanted_variation <- function(.data,
formula_composition_keep = NULL,
formula_composition = NULL,
formula_variability = NULL,
cores = detectCores()) {
# Check for deprecated arguments
if (!is.null(formula_composition)) {
warning("The argument 'formula_composition' is deprecated. Please use 'formula_composition_keep' instead.", call. = FALSE)
formula_composition_keep <- formula_composition
}
if (!is.null(formula_variability)) {
warning("The argument 'formula_variability' is deprecated as not used.", call. = FALSE)
}
# Run the function
check_and_install_cmdstanr()
UseMethod("sccomp_remove_unwanted_variation", .data)
}
#' @importFrom readr write_file
#' @export
#'
sccomp_remove_unwanted_variation.sccomp_tbl = function(.data,
formula_composition_keep = NULL,
formula_composition = NULL,
formula_variability = NULL,
cores = detectCores()){
model_input = attr(.data, "model_input")
.sample = attr(.data, ".sample")
.cell_group = attr(.data, ".cell_group")
.grouping_for_random_effect = attr(.data, ".grouping_for_random_effect")
.count = attr(.data, ".count")
# Residuals
message("sccomp says: calculating residuals")
residuals = .data |> sccomp_calculate_residuals()
message("sccomp says: regressing out unwanted factors")
# Generate quantities
.data |>
sccomp_predict(
formula_composition = formula_composition_keep,
number_of_draws = attr(.data, "fit") |> get_output_samples() |> min(500)
) |>
distinct(!!.sample, !!.cell_group, proportion_mean) |>
# mutate(proportion_mean =
# proportion_mean |>
# # compress_zero_one() |>
# boot::logit()
# ) |>
left_join(residuals, by = c(quo_name(.sample), quo_name(.cell_group))) |>
mutate(adjusted_proportion = proportion_mean + residuals) |>
mutate(adjusted_proportion = adjusted_proportion |> pmax(0)) |>
# mutate(adjusted_proportion = adjusted_proportion |> boot::inv.logit()) |>
# with_groups(!!.sample, ~ .x |> mutate(adjusted_proportion := adjusted_proportion / sum(adjusted_proportion ))) |>
# Recostituite counts
mutate(adjusted_counts = adjusted_proportion * exposure) |>
select(!!.sample, !!.cell_group, adjusted_proportion, adjusted_counts, residuals)
}
#' simulate_data
#'
#' @description This function simulates counts from a linear model.
#'
#' @import dplyr
#' @importFrom magrittr %$%
#' @importFrom magrittr divide_by
#' @importFrom magrittr multiply_by
#' @importFrom magrittr equals
#' @importFrom rlang quo_is_null
#' @importFrom SingleCellExperiment colData
#' @importFrom parallel detectCores
#'
#' @param .data A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column
#' @param .estimate_object The result of sccomp_estimate execution. This is used for sampling from real-data properties.
#' @param formula_composition A formula. The sample formula used to perform the differential cell_group abundance analysis
#' @param formula_variability A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large anount of data is needed to define variability depending to each factors.
#' @param .sample A column name as symbol. The sample identifier
#' @param .cell_group A column name as symbol. The cell_group identifier
#' @param .coefficients The column names for coefficients, for example, c(b_0, b_1)
#' @param variability_multiplier A real scalar. This can be used for artificially increasing the variability of the simulation for benchmarking purposes.
#' @param number_of_draws An integer. How may copies of the data you want to draw from the model joint posterior distribution.
#' @param mcmc_seed An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()#' @param cores Integer, the number of cores to be used for parallel calculations.
#' @param cores Integer, the number of cores to be used for parallel calculations.
#'
#' @return A tibble (`tbl`) with the following columns:
#' \itemize{
#' \item \strong{sample} - A character column representing the sample name.
#' \item \strong{type} - A factor column representing the type of the sample.
#' \item \strong{phenotype} - A factor column representing the phenotype in the data.
#' \item \strong{count} - An integer column representing the original cell counts.
#' \item \strong{cell_group} - A character column representing the cell group identifier.
#' \item \strong{b_0} - A numeric column representing the first coefficient used for simulation.
#' \item \strong{b_1} - A numeric column representing the second coefficient used for simulation.
#' \item \strong{generated_proportions} - A numeric column representing the generated proportions from the simulation.
#' \item \strong{generated_counts} - An integer column representing the generated cell counts from the simulation.
#' \item \strong{replicate} - An integer column representing the replicate number for each draw from the posterior distribution.
#' }
#'
#'
#' @export
#'
#' @examples
#'
#' message("Use the following example after having installed install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists()) {
#' data("counts_obj")
#' library(dplyr)
#'
#' estimate = sccomp_estimate(
#' counts_obj,
#' ~ type, ~1, sample, cell_group, count,
#' cores = 1
#' )
#'
#' # Set coefficients for cell_groups. In this case all coefficients are 0 for simplicity.
#' counts_obj = counts_obj |> mutate(b_0 = 0, b_1 = 0)
#'
#' # Simulate data
#' simulate_data(counts_obj, estimate, ~type, ~1, sample, cell_group, c(b_0, b_1))
#' }
#' }
#'
simulate_data <- function(.data,
.estimate_object,
formula_composition,
formula_variability = NULL,
.sample = NULL,
.cell_group = NULL,
.coefficients = NULL,
variability_multiplier = 5,
number_of_draws = 1,
mcmc_seed = sample(1e5, 1),
cores = detectCores()) {
# Run the function
check_and_install_cmdstanr()
UseMethod("simulate_data", .data)
}
#' @export
#' @importFrom magrittr divide_by
#' @importFrom magrittr multiply_by
#' @importFrom SingleCellExperiment counts
#' @importFrom purrr map_dbl
#' @importFrom purrr pmap
#' @importFrom readr read_file
#'
simulate_data.tbl = function(.data,
.estimate_object,
formula_composition,
formula_variability = NULL,
.sample = NULL,
.cell_group = NULL,
.coefficients = NULL,
variability_multiplier = 5,
number_of_draws = 1,
mcmc_seed = sample(1e5, 1),
cores = detectCores()){
.sample = enquo(.sample)
.cell_group = enquo(.cell_group)
.coefficients = enquo(.coefficients)
#Check column class
check_if_columns_right_class(.data, !!.sample, !!.cell_group)
model_data = attr(.estimate_object, "model_input")
# # Select model based on noise model
# if(attr(.estimate_object, "noise_model") == "multi_beta_binomial") my_model = stanmodels$glm_multi_beta_binomial_simulate_data
# else if(attr(.estimate_object, "noise_model") == "dirichlet_multinomial") my_model = get_model_from_data("model_glm_dirichlet_multinomial_generate_quantities.rds", glm_dirichlet_multinomial_generate_quantities)
# else if(attr(.estimate_object, "noise_model") == "logit_normal_multinomial") my_model = get_model_from_data("glm_multinomial_logit_linear_simulate_data.stan", read_file("~/PostDoc/sccomp/dev/stan_models/glm_multinomial_logit_linear_simulate_data.stan"))
data_for_model =
.data %>%
nest(data___ = -!!.sample) %>%
mutate(.exposure = sample(model_data$exposure, size = n(), replace = TRUE )) %>%
unnest(data___) %>%
data_simulation_to_model_input(
formula_composition,
#formula_variability,
!!.sample, !!.cell_group, .exposure, !!.coefficients
)
names(data_for_model) = names(data_for_model) |> stringr::str_c("_simulated")
# Drop data from old input
original_data = .estimate_object |> attr("model_input")
original_data = original_data[(names(original_data) %in% c("C", "M", "A", "ncol_X_random_eff", "is_random_effect", "how_many_factors_in_random_design" ))]
# [1] 5.6260004 -0.6940178
# prec_sd = 0.816423129
mod_rng = load_model("glm_multi_beta_binomial_simulate_data", threads = cores)
fit = mod_rng |> sample_safe(
generate_quantities_fx,
attr(.estimate_object , "fit")$draws(format = "matrix"),
# This is for the new data generation with selected factors to do adjustment
data = data_for_model %>% c(original_data) |> c(list(variability_multiplier = variability_multiplier)),
seed = mcmc_seed,
parallel_chains = attr(.estimate_object , "fit")$metadata()$threads_per_chain,
threads_per_chain = cores
)
parsed_fit =
fit %>%
parse_generated_quantities(number_of_draws = number_of_draws) %>%
# Get sample name
nest(data = -N) %>%
arrange(N) %>%
mutate(!!.sample := rownames(data_for_model$X_simulated)) %>%
unnest(data) %>%
# get cell type name
nest(data = -M) %>%
mutate(!!.cell_group := colnames(data_for_model$beta_simulated)) %>%
unnest(data) %>%
select(-N, -M)
.data %>%
left_join(
parsed_fit,
by = c(quo_name(.sample), quo_name(.cell_group))
)
}
#' sccomp_boxplot
#'
#' @description This function plots a boxplot of the results of the model.
#'
#' @importFrom ggrepel geom_text_repel
#' @importFrom tidyr pivot_longer
#' @import ggplot2
#' @importFrom tidyr unite
#' @importFrom tidyr pivot_longer
#' @importFrom dplyr with_groups
#'
#' @param .data A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column
#' @param factor A character string for a factor of interest included in the model
#' @param significance_threshold A real. FDR threshold for labelling significant cell-groups.
#' @param test_composition_above_logit_fold_change A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.
#'
#' @return A `ggplot`
#'
#' @export
#'
#' @examples
#'
#' message("Use the following example after having installed install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists()) {
#' data("counts_obj")
#'
#' estimate = sccomp_estimate(
#' counts_obj,
#' ~ type, ~1, sample, cell_group, count,
#' cores = 1
#' ) |>
#' sccomp_test()
#'
#' # estimate |> sccomp_boxplot()
#' }
#' }
#'
sccomp_boxplot = function(.data, factor, significance_threshold = 0.05, test_composition_above_logit_fold_change = .data |> attr("test_composition_above_logit_fold_change")){
.cell_group = attr(.data, ".cell_group")
.count = attr(.data, ".count")
.sample = attr(.data, ".sample")
# Check if test have been done
if(.data |> select(ends_with("FDR")) |> ncol() |> equals(0))
stop("sccomp says: to produce plots, you need to run the function sccomp_test() on your estimates.")
data_proportion =
.data %>%
# Otherwise does not work
select(-`factor`) %>%
pivot_wider(names_from = parameter, values_from = c(contains("c_"), contains("v_"))) %>%
unnest(count_data) %>%
with_groups(!!.sample, ~ mutate(.x, proportion = (!!.count)/sum(!!.count)) )
# If I don't have outliers add them
if(!"outlier" %in% colnames(data_proportion)) data_proportion = data_proportion |> mutate(outlier = FALSE)
plot_boxplot(
.data,
data_proportion,
factor,
!!.cell_group,
!!.sample,
significance_threshold = significance_threshold,
multipanel_theme
) +
ggtitle(sprintf("Grouped by %s (for multi-factor models, associations could be hardly observable with unidimensional data stratification)", factor))
}
#' plot
#'
#' @description This function plots a summary of the results of the model.
#'
#' @importFrom ggrepel geom_text_repel
#' @importFrom tidyr pivot_longer
#' @import ggplot2
#' @importFrom tidyr unite
#' @importFrom tidyr pivot_longer
#' @importFrom dplyr with_groups
#' @importFrom magrittr equals
#'
#' @param x A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column
#' @param significance_threshold Numeric value specifying the significance threshold for highlighting differences. Default is 0.025.
#' @param test_composition_above_logit_fold_change A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.
#' @param ... For internal use
#'
#' @return A `ggplot`
#'
#' @export
#'
#' @examples
#'
#' message("Use the following example after having installed install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' if (instantiate::stan_cmdstan_exists()) {
#' data("counts_obj")
#'
#' estimate = sccomp_estimate(
#' counts_obj,
#' ~ type, ~1, sample, cell_group, count,
#' cores = 1
#' )
#'
#' # estimate |> plot()
#' }
#' }
#'
plot.sccomp_tbl <- function(x, significance_threshold = 0.05, test_composition_above_logit_fold_change = .data |> attr("test_composition_above_logit_fold_change"), ...) {
# Define the variables as NULL to avoid CRAN NOTES
parameter <- NULL
count_data <- NULL
v_effect <- NULL
.cell_group = attr(x, ".cell_group")
.count = attr(x, ".count")
.sample = attr(x, ".sample")
plots = list()
# Check if test have been done
if(x |> select(ends_with("FDR")) |> ncol() |> equals(0))
stop("sccomp says: to produce plots, you need to run the function sccomp_test() on your estimates.")
data_proportion =
x %>%
# Otherwise does not work
select(-`factor`) %>%
pivot_wider(names_from = parameter, values_from = c(contains("c_"), contains("v_"))) %>%
unnest(count_data) %>%
with_groups(!!.sample, ~ mutate(.x, proportion = (!!.count)/sum(!!.count)) )
# If I don't have outliers add them
if(!"outlier" %in% colnames(data_proportion)) data_proportion = data_proportion |> mutate(outlier = FALSE)
# Select the factors to plot
my_factors =
x %>%
filter(!is.na(`factor`)) |>
distinct(`factor`) %>%
pull(`factor`)
if(length(my_factors)==0)
message("sccomp says: the contrasts you have tested do not represent factors. Therefore, plot of the the posterior predictive check will be omitted.")
else {
# Boxplot
plots$boxplot =
my_factors |>
map(
~ {
# If variable is continuous
if(data_proportion |> select(all_of(.x)) |> pull(1) |> is("numeric"))
my_plot =
plot_scatterplot(
.data = x,
data_proportion = data_proportion,
factor_of_interest = .x,
.cell_group = !!.cell_group,
.sample = !!.sample,
my_theme = multipanel_theme,
significance_threshold = significance_threshold
)
# If discrete
else
my_plot =
plot_boxplot(
.data = x,
data_proportion = data_proportion,
factor_of_interest = .x,
.cell_group = !!.cell_group,
.sample = !!.sample,
my_theme = multipanel_theme,
significance_threshold = significance_threshold
)
# Return
my_plot +
ggtitle(sprintf("Grouped by %s (for multi-factor models, associations could be hardly observable with unidimensional data stratification)", .x))
} )
}
# 1D intervals
plots$credible_intervals_1D = plot_1D_intervals(.data = x, significance_threshold = significance_threshold)
# 2D intervals
if("v_effect" %in% colnames(x) && (x |> filter(!is.na(v_effect)) |> nrow()) > 0) plots$credible_intervals_2D = plot_2D_intervals(.data = x, significance_threshold = significance_threshold)
plots
}
#' Clear Stan Model Cache
#'
#' This function attempts to delete the Stan model cache directory and its contents.
#' If the cache directory does not exist, it prints a message indicating this.
#'
#' @param cache_dir A character string representing the path of the cache directory to delete. Defaults to `sccomp_stan_models_cache_dir`.
#'
#' @return NULL
#'
#' @examples
#'
#' message("Use the following example after having installed install.packages(\"cmdstanr\", repos = c(\"https://stan-dev.r-universe.dev/\", getOption(\"repos\")))")
#'
#' \donttest{
#' clear_stan_model_cache("path/to/cache_dir")
#' }
#' @noRd
clear_stan_model_cache <- function(cache_dir = sccomp_stan_models_cache_dir) {
# Check if the directory exists
if (dir.exists(cache_dir)) {
# Attempt to delete the directory and its contents
unlink(cache_dir, recursive = TRUE)
message("Cache deleted: ", cache_dir)
} else {
message("Cache does not exist: ", cache_dir)
}
}
#' Calculate Proportional Fold Change for sccomp Data
#'
#' This function calculates the proportional fold change for single-cell composition data
#' from sccomp analysis, comparing two conditions.
#'
#' Note! This statistic is just descriptive and should not be used to define significance. Use sccomp_test() for that.
#' This statistics is just meant to help interpretation. While fold increase in proportion is easier to understand than
#' fold change in logit space, the first is not linear (the same change for rare cell types does not necessarily have the same weight
#' that for abundant cell types), while the latter is linear, and used to infer probabilities.
#'
#'
#' @param .data A `sccomp_tbl` object containing single-cell composition data.
#' @param formula_composition The formula for the composition model.
#' @param from The label for the control group (e.g., "healthy").
#' @param to The label for the treatment group (e.g., "cancer").
#' @return A tibble with cell groups and their respective proportional fold change.
#' @examples
#' \dontrun{
#' # Example usage
#' result <- sccomp_proportional_fold_change(sccomp_data, formula_composition, "healthy", "cancer")
#' }
#' @export
sccomp_proportional_fold_change <- function(.data, formula_composition, from, to) {
UseMethod("sccomp_proportional_fold_change", .data)
}
#' @export
#'
#' @importFrom glue glue
#'
sccomp_proportional_fold_change.sccomp_tbl = function(.data, formula_composition, from, to){
my_factor = parse_formula(formula_composition)
# Predict the composition for the specified conditions
.data |>
sccomp_predict(
formula_composition = formula_composition,
new_data =
tibble(sample=as.character(c(to, from)), factor = c(to, from)) |>
rename(!!my_factor := `factor`)
) |>
# Nest the predicted data by cell group
nest(data = -!!.data |> attr(".cell_group")) |>
# Calculate the ratio of proportions between 'to' and 'from' conditions
mutate(
ratio_mean = map_dbl(
data,
~ {
x = .x |> arrange(sample != !!from) |> pull(proportion_mean);
x[2]/x[1] })
) |>
mutate(
proportion_from = map_dbl(data, ~.x |> filter(sample==from) |> pull(proportion_mean)),
proportion_to = map_dbl(data, ~.x |> filter(sample!=from) |> pull(proportion_mean))
) |>
# Calculate the proportional fold change
mutate(proportion_fold_change = if_else(ratio_mean<1, (-1/ratio_mean) , ratio_mean)) |>
# Calculate the ratio of credible interval between 'to' and 'from' conditions
mutate(
ratio_upper = map_dbl(
data,
~ {
x = .x |> arrange(sample != !!from) |> pull(proportion_upper);
x[2]/x[1] }),
ratio_lower = map_dbl(
data,
~ {
x = .x |> arrange(sample != !!from) |> pull(proportion_lower);
x[2]/x[1] })
) |>
# Calculate the proportional fold change
mutate(
difference_proportion_upper_fold_change = if_else(ratio_mean<1, (-1/ratio_upper) , ratio_upper) - proportion_fold_change,
difference_proportion_lower_fold_change = if_else(ratio_mean<1, (-1/ratio_lower) , ratio_lower) - proportion_fold_change
) |>
mutate(average_uncertainty = (abs(difference_proportion_upper_fold_change) + abs(difference_proportion_lower_fold_change))/2) |>
# Print expression
mutate(increase_decrease = if_else(proportion_fold_change>0, "increase", "decrease")) |>
mutate(statement = glue("{round(abs(proportion_fold_change),1)}-fold {increase_decrease} (from {round(proportion_from, 4)} to {round(proportion_to, 4)})")) |>
# Select and return the relevant columns
select(
!!.data |> attr(".cell_group"),
proportion_fold_change,
average_uncertainty,
statement
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.