#' @title Weight annotations
#'
#' @description This function weights annotations.
#'
#' @include clean_bio.R
#' @include clean_chemo.R
#' @include columns_model.R
#' @include decorate_bio.R
#' @include decorate_chemo.R
#' @include get_default_paths.R
#' @include get_params.R
#' @include weight_bio.R
#' @include weight_chemo.R
#'
#' @param library Library containing the keys
#' @param org_tax_ott File containing organisms taxonomy (OTT)
#' @param str_stereo File containing structures stereo
#' @param annotations Prepared annotations file
#' @param canopus Prepared canopus file
#' @param formula Prepared formula file
#' @param components Prepared components file
#' @param edges Prepared edges file
#' @param taxa Prepared taxed features file
#' @param output Output file
#' @param candidates_neighbors Number of neighbors candidates to keep
#' @param candidates_final Number of final candidates to keep
#' @param weight_spectral Weight for the spectral score
#' @param weight_chemical Weight for the biological score
#' @param weight_biological Weight for the chemical consistency score
#' @param score_biological_domain Score for a `domain` match
#' (should be lower than `kingdom`)
#' @param score_biological_kingdom Score for a `kingdom` match
#' (should be lower than `phylum`)
#' @param score_biological_phylum Score for a `phylum` match
#' (should be lower than `class`)
#' @param score_biological_class Score for a `class` match
#' (should be lower than `order`)
#' @param score_biological_order Score for a `order` match
#' (should be lower than `infraorder`)
#' @param score_biological_infraorder Score for a `infraorder` match
#' (should be lower than `order`)
#' @param score_biological_family Score for a `family` match
#' (should be lower than `subfamily`)
#' @param score_biological_subfamily Score for a `subfamily` match
#' (should be lower than `family`)
#' @param score_biological_tribe Score for a `tribe` match
#' (should be lower than `subtribe`)
#' @param score_biological_subtribe Score for a `subtribe` match
#' (should be lower than `genus`)
#' @param score_biological_genus Score for a `genus` match
#' (should be lower than `subgenus`)
#' @param score_biological_subgenus Score for a `subgenus` match
#' (should be lower than `species`)
#' @param score_biological_species Score for a `species` match
#' (should be lower than `subspecies`)
#' @param score_biological_subspecies Score for a `subspecies` match
#' (should be lower than `variety`)
#' @param score_biological_variety Score for a `variety` match
#' (should be the highest)
#' @param score_chemical_cla_kingdom Score for a `Classyfire kingdom` match
#' (should be lower than ` Classyfire superclass`)
#' @param score_chemical_cla_superclass
#' Score for a `Classyfire superclass` match
#' (should be lower than `Classyfire class`)
#' @param score_chemical_cla_class Score for a `Classyfire class` match
#' (should be lower than `Classyfire parent`)
#' @param score_chemical_cla_parent Score for a `Classyfire parent` match
#' (should be the highest)
#' @param score_chemical_npc_pathway Score for a `NPC pathway` match
#' (should be lower than ` NPC superclass`)
#' @param score_chemical_npc_superclass Score for a `NPC superclass`
#' match (should be lower than `NPC class`)
#' @param score_chemical_npc_class Score for a `NPC class` match
#' (should be the highest)
#' @param force Force parameters. Use it at your own risk
#' @param minimal_consistency Minimal consistency score for a class. FLOAT
#' @param minimal_ms1_bio Minimal biological score to keep MS1 based annotation
#' @param minimal_ms1_chemo Minimal chemical score to keep MS1 based annotation
#' @param minimal_ms1_condition Condition to be used. Must be "OR" or "AND".
#' @param ms1_only Keep only MS1 annotations. BOOLEAN
#' @param compounds_names Report compounds names. Can be very large. BOOLEAN
#' @param high_confidence Report high confidence candidates only. BOOLEAN
#' @param remove_ties Remove ties. BOOLEAN
#' @param summarize Summarize results (1 row per feature). BOOLEAN
#' @param pattern Pattern to identify your job. STRING
#'
#' @return The path to the weighted annotations
#'
#' @export
#'
#' @seealso annotate_masses weight_bio weight_chemo
#'
#' @examples
#' \dontrun{
#' copy_backbone()
#' go_to_cache()
#' github <- "https://raw.githubusercontent.com/"
#' repo <- "taxonomicallyinformedannotation/tima-example-files/main/"
#' dir <- paste0(github, repo)
#' library <- get_params(step = "weight_annotations")$files$libraries$sop$merged$keys |>
#' gsub(
#' pattern = ".gz",
#' replacement = "",
#' fixed = TRUE
#' )
#' org_tax_ott <- paste0(
#' "data/interim/libraries/",
#' "sop/merged/organisms/taxonomies/ott.tsv"
#' )
#' str_stereo <- paste0(
#' "data/interim/libraries/",
#' "sop/merged/structures/stereo.tsv"
#' )
#' annotations <- paste0(
#' "data/interim/annotations/",
#' "example_annotationsFiltered.tsv"
#' )
#' canopus <- paste0(
#' "data/interim/annotations/",
#' "example_canopusPrepared.tsv"
#' )
#' formula <- paste0(
#' "data/interim/annotations/",
#' "example_formulaPrepared.tsv"
#' )
#' components <- paste0(
#' "data/interim/features/",
#' "example_componentsPrepared.tsv"
#' )
#' edges <- paste0(
#' "data/interim/features/",
#' "example_edges.tsv"
#' )
#' taxa <- paste0(
#' "data/interim/taxa/",
#' "example_taxed.tsv"
#' )
#' get_file(url = paste0(dir, library), export = library)
#' get_file(url = paste0(dir, org_tax_ott), export = org_tax_ott)
#' get_file(url = paste0(dir, str_stereo), export = str_stereo)
#' get_file(url = paste0(dir, annotations), export = annotations)
#' get_file(url = paste0(dir, canopus), export = canopus)
#' get_file(url = paste0(dir, formula), export = formula)
#' get_file(url = paste0(dir, components), export = components)
#' get_file(url = paste0(dir, edges), export = edges)
#' get_file(url = paste0(dir, taxa), export = taxa)
#' weight_annotations(
#' library = library,
#' org_tax_ott = org_tax_ott,
#' str_stereo = str_stereo,
#' annotations = annotations,
#' canopus = canopus,
#' formula = formula,
#' components = components,
#' edges = edges,
#' taxa = taxa
#' )
#' unlink("data", recursive = TRUE)
#' }
weight_annotations <- function(
library = get_params(
step = "weight_annotations"
)$files$libraries$sop$merged$keys,
org_tax_ott = get_params(
step = "weight_annotations"
)$files$libraries$sop$merged$organisms$taxonomies$ott,
str_stereo = get_params(
step = "weight_annotations"
)$files$libraries$sop$merged$structures$stereo,
annotations = get_params(
step = "weight_annotations"
)$files$annotations$filtered,
canopus = get_params(
step = "weight_annotations"
)$files$annotations$prepared$canopus,
formula = get_params(
step = "weight_annotations"
)$files$annotations$prepared$formula,
components = get_params(
step = "weight_annotations"
)$files$networks$spectral$components$prepared,
edges = get_params(
step = "weight_annotations"
)$files$networks$spectral$edges$prepared,
taxa = get_params(step = "weight_annotations")$files$metadata$prepared,
output = get_params(step = "weight_annotations")$files$annotations$processed,
candidates_neighbors = get_params(
step = "weight_annotations"
)$annotations$candidates$neighbors,
candidates_final = get_params(
step = "weight_annotations"
)$annotations$candidates$final,
weight_spectral = get_params(
step = "weight_annotations"
)$weights$global$spectral,
weight_chemical = get_params(
step = "weight_annotations"
)$weights$global$chemical,
weight_biological = get_params(
step = "weight_annotations"
)$weights$global$biological,
score_biological_domain = get_params(
step = "weight_annotations"
)$weights$biological$domain,
score_biological_kingdom = get_params(
step = "weight_annotations"
)$weights$biological$kingdom,
score_biological_phylum = get_params(
step = "weight_annotations"
)$weights$biological$phylum,
score_biological_class = get_params(
step = "weight_annotations"
)$weights$biological$class,
score_biological_order = get_params(
step = "weight_annotations"
)$weights$biological$order,
score_biological_infraorder = get_params(
step = "weight_annotations"
)$weights$biological$infraorder,
score_biological_family = get_params(
step = "weight_annotations"
)$weights$biological$family,
score_biological_subfamily = get_params(
step = "weight_annotations"
)$weights$biological$subfamily,
score_biological_tribe = get_params(
step = "weight_annotations"
)$weights$biological$tribe,
score_biological_subtribe = get_params(
step = "weight_annotations"
)$weights$biological$subtribe,
score_biological_genus = get_params(
step = "weight_annotations"
)$weights$biological$genus,
score_biological_subgenus = get_params(
step = "weight_annotations"
)$weights$biological$subgenus,
score_biological_species = get_params(
step = "weight_annotations"
)$weights$biological$species,
score_biological_subspecies = get_params(
step = "weight_annotations"
)$weights$biological$subspecies,
score_biological_variety = get_params(
step = "weight_annotations"
)$weights$biological$variety,
score_chemical_cla_kingdom = get_params(
step = "weight_annotations"
)$weights$chemical$cla$kingdom,
score_chemical_cla_superclass = get_params(
step = "weight_annotations"
)$weights$chemical$cla$superclass,
score_chemical_cla_class = get_params(
step = "weight_annotations"
)$weights$chemical$cla$class,
score_chemical_cla_parent = get_params(
step = "weight_annotations"
)$weights$chemical$cla$parent,
score_chemical_npc_pathway = get_params(
step = "weight_annotations"
)$weights$chemical$npc$pathway,
score_chemical_npc_superclass = get_params(
step = "weight_annotations"
)$weights$chemical$npc$superclass,
score_chemical_npc_class = get_params(
step = "weight_annotations"
)$weights$chemical$npc$class,
minimal_consistency = get_params(
step = "weight_annotations"
)$annotations$thresholds$consistency,
minimal_ms1_bio = get_params(
step = "weight_annotations"
)$annotations$thresholds$ms1$biological,
minimal_ms1_chemo = get_params(
step = "weight_annotations"
)$annotations$thresholds$ms1$chemical,
minimal_ms1_condition = get_params(
step = "weight_annotations"
)$annotations$thresholds$ms1$condition,
ms1_only = get_params(step = "weight_annotations")$annotations$ms1only,
compounds_names = get_params(
step = "weight_annotations"
)$options$compounds_names,
high_confidence = get_params(
step = "weight_annotations"
)$options$high_confidence,
remove_ties = get_params(step = "weight_annotations")$options$remove_ties,
summarize = get_params(step = "weight_annotations")$options$summarize,
pattern = get_params(step = "weight_annotations")$files$pattern,
force = get_params(step = "weight_annotations")$options$force
) {
stopifnot(
"Annotations file(s) do(es) not exist" = all(
purrr::map(.x = annotations, .f = file.exists) |>
unlist()
)
)
stopifnot("Your library file does not exist." = file.exists(library))
stopifnot("Your components file does not exist." = file.exists(components))
stopifnot("Your edges file does not exist." = file.exists(edges))
stopifnot("Your taxa file does not exist." = file.exists(taxa))
stopifnot(
"Condition must be 'OR' or 'AND'." = minimal_ms1_condition %in%
c("OR", "AND")
)
logger::log_trace("Loading files ...")
logger::log_trace("... components")
components_table <- tidytable::fread(
file = components,
na.strings = c("", "NA"),
colClasses = "character"
)
logger::log_trace("... edges")
edges_table <- tidytable::fread(
file = edges,
na.strings = c("", "NA"),
colClasses = "character"
) |>
tidytable::group_by(feature_source) |>
tidytable::slice_max(
order_by = candidate_score_similarity,
n = candidates_neighbors,
with_ties = FALSE
)
logger::log_trace("... structure-organism pairs")
library_table <- tidytable::fread(
file = library,
na.strings = c("", "NA"),
colClasses = "character"
)
supp_files <- list(str_stereo, org_tax_ott)
supp_tables <- purrr::map(
.x = supp_files,
.f = function(file.path) {
tidytable::fread(
file = file.path,
na.strings = c("", "NA"),
colClasses = "character"
)
}
)
structure_organism_pairs_table <- purrr::reduce(
.x = supp_tables,
.init = library_table,
.f = tidytable::left_join
)
logger::log_trace("... canopus")
canopus_table <-
tidytable::fread(
file = canopus,
na.strings = c("", "NA"),
colClasses = "character"
)
logger::log_trace("... formula")
formula_table <-
tidytable::fread(
file = formula,
na.strings = c("", "NA"),
colClasses = "character"
)
logger::log_trace("... annotations")
annotation_table <- purrr::map(
.x = annotations,
.f = tidytable::fread,
na.strings = c("", "NA"),
colClasses = "character"
) |>
tidytable::bind_rows()
if (ms1_only == TRUE) {
annotation_table <- annotation_table |>
tidytable::filter(
is.na(candidate_score_similarity) &
is.na(candidate_score_sirius_csi)
)
}
logger::log_trace("Initial annotations:")
annotation_stats <- annotation_table |>
tidytable::filter(
!is.na(
candidate_structure_inchikey_connectivity_layer
)
) |>
tidytable::distinct(
feature_id,
candidate_library,
candidate_structure_inchikey_connectivity_layer
) |>
tidytable::group_by(candidate_library) |>
tidytable::count() |>
tidytable::arrange(
n |>
tidytable::desc()
)
logger::log_info(
"\n{paste(capture.output(print.data.frame(annotation_stats, row.names = FALSE)), collapse = '\n')}"
)
rm(annotation_stats)
features_table <- annotation_table |>
tidytable::distinct(feature_id, rt, mz)
logger::log_trace("Re-arranging annotations")
model <- columns_model()
annotation_table_1 <- annotation_table |>
tidytable::select(tidyselect::any_of(
c(
model$features_columns,
model$candidates_calculated_columns,
model$candidates_spectra_columns,
model$candidates_structures_columns
)
)) |>
## keep best score per structure (example if annotated by MS1 and MS2)
tidytable::arrange(
candidate_score_similarity |>
tidytable::desc()
) |>
tidytable::distinct(
feature_id,
candidate_structure_inchikey_connectivity_layer,
candidate_structure_smiles_no_stereo,
.keep_all = TRUE
)
annotation_table_2 <- annotation_table |>
tidytable::select(
tidyselect::any_of(
c(
model$features_columns,
model$candidates_sirius_str_columns,
model$candidates_structures_columns
)
),
-candidate_structure_error_mz,
-candidate_structure_error_rt
) |>
tidytable::filter(!is.na(candidate_score_sirius_csi)) |>
tidytable::distinct()
rm(annotation_table)
tables_full <- list(
annotation_table_1,
annotation_table_2,
formula_table,
canopus_table
)
annotation_table <- purrr::reduce(
.x = tables_full,
.f = function(x, y) {
tidytable::full_join(x, y)
}
)
annotation_table <- annotation_table |>
tidytable::left_join(
edges_table |>
tidytable::distinct(
feature_id = feature_source,
feature_spectrum_entropy,
feature_spectrum_peaks
)
)
logger::log_trace("Adding biological organism metadata")
annotation_table_taxed <- annotation_table |>
tidytable::left_join(tidytable::fread(
file = taxa,
na.strings = c("", "NA"),
colClasses = "character"
))
rm(
annotation_table,
annotation_table_1,
annotation_table_2,
formula_table,
canopus_table,
tables_full
)
logger::log_trace("Performing taxonomically informed scoring")
annot_table_wei_bio <- weight_bio()
rm(annotation_table_taxed)
annot_table_wei_bio |>
decorate_bio()
annot_table_wei_bio_clean <- annot_table_wei_bio |>
clean_bio()
rm(annot_table_wei_bio)
annot_table_wei_chemo <- annot_table_wei_bio_clean |>
weight_chemo()
rm(annot_table_wei_bio_clean)
annot_table_wei_chemo |>
decorate_chemo()
results_list <- annot_table_wei_chemo |>
clean_chemo()
rm(annot_table_wei_chemo)
time <- format(Sys.time(), "%Y%m%d_%H%M%S")
dir_time <- file.path(
get_default_paths()$data$processed$path,
paste0(time, "_", pattern)
)
final_output <- file.path(dir_time, output)
final_output_filtered <- file.path(
dir_time,
output |>
gsub(pattern = ".tsv", replacement = "_filtered.tsv", fixed = TRUE)
)
final_output_mini <- file.path(
dir_time,
output |>
gsub(pattern = ".tsv", replacement = "_mini.tsv", fixed = TRUE)
)
export_params(
parameters = get_params(step = "prepare_params"),
directory = dir_time,
step = "prepare_params"
)
export_params(
parameters = get_params(step = "prepare_params_advanced"),
directory = dir_time,
step = "prepare_params_advanced"
)
export_output(x = results_list$mini, file = final_output_mini)
export_output(x = results_list$filtered, file = final_output_filtered)
export_output(x = results_list$full, file = final_output)
rm(results_list)
return(
c(
"filtered" = final_output_filtered,
"full" = final_output
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.