#' Adjust for batch effects using an empirical Bayesian or parameter frameworks
#'
#' ComBat allows users to adjust for batch effects in datasets where the batch covariate is known, using methodology
#' described in Johnson et al. 2007. It uses either parametric or non-parametric empirical Bayes frameworks for adjusting data for
#' batch effects. Users are returned an expression matrix that has been corrected for batch effects. The input
#' data are assumed to be cleaned and normalized before batch effect removal.[[Cpp Rewrite and we finally get 100x speedup]]
#' (For 485512 x 6 expression array matrix = 9622.983 secs = 2 hrs 40 mins) and origin source code of pure R version is from minif package
#'
#' @param dat Genomic measure matrix (dimensions probe x sample) - for example, expression matrix
#' @param batch {Batch covariate (only one batch allowed)}
#' @param mod Model matrix for outcome of interest and other covariates besides batch
#' @param par.prior (Optional) TRUE indicates parametric adjustments will be used, FALSE indicates non-parametric adjustments will be used
#' @param prior.plots (Optional)TRUE give prior plots with black as a kernel estimate of the empirical batch effect density and red as the parametric
#' @importFrom genefilter rowVars
#' @return data :
#' A probe x sample genomic measure matrix, adjusted for batch effects.
#' @export
#' @author Xin Zhou \url{xinchoubiology@@gmail.com}
ComBat <- function(dat, batch, mod=NULL, par.prior=TRUE,prior.plots=FALSE) {
# make batch a factor and make a set of indicators for batch
if(length(dim(batch))>1){stop("This version of ComBat only allows one batch variable")} ## to be updated soon!
batch <- as.factor(batch)
batchmod <- model.matrix(~ -1 + batch)
cat("Found",nlevels(batch),'batches\n')
# A few other characteristics on the batches
n.batch <- nlevels(batch)
batches <- list()
for (i in 1:n.batch){batches[[i]] <- which(batch == levels(batch)[i])} # list of samples in each batch
n.batches <- sapply(batches, length)
n.array <- sum(n.batches)
#combine batch variable and covariates
design <- cbind(batchmod,mod)
# check for intercept in covariates, and drop if present
check <- apply(design, 2, function(x) all(x == 1))
design <- as.matrix(design[,!check])
# Number of covariates or covariate levels
cat("Adjusting for",ncol(design)-ncol(batchmod),'covariate(s) or covariate level(s)\n')
# Check if the design is confounded
if(qr(design)$rank<ncol(design)){
#if(ncol(design)<=(n.batch)){stop("Batch variables are redundant! Remove one or more of the batch variables so they are no longer confounded")}
if(ncol(design)==(n.batch+1)){stop("The covariate is confounded with batch! Remove the covariate and rerun ComBat")}
if(ncol(design)>(n.batch+1)){
if((qr(design[,-c(1:n.batch)])$rank<ncol(design[,-c(1:n.batch)]))){stop('The covariates are confounded! Please remove one or more of the covariates so the design is not confounded')
}else{stop("At least one covariate is confounded with batch! Please remove confounded covariates and rerun ComBat")}}
}
## Check for missing values
NAs = any(is.na(dat))
if(NAs){cat(c('Found',sum(is.na(dat)),'Missing Data Values\n'),sep=' ')}
#print(dat[1:2,])
##Standardize Data across genes
cat('Standardizing Data across genes\n')
if (!NAs){B.hat <- solve(t(design)%*%design)%*%t(design)%*%t(as.matrix(dat))}else{B.hat=apply(dat,1,Beta.NA,design)} #Standarization Model
grand.mean <- t(n.batches/n.array)%*%B.hat[1:n.batch,]
if (!NAs){var.pooled <- ((dat-t(design%*%B.hat))^2)%*%rep(1/n.array,n.array)}else{var.pooled <- apply(dat-t(design%*%B.hat),1,var,na.rm=T)}
stand.mean <- t(grand.mean)%*%t(rep(1,n.array))
if(!is.null(design)){tmp <- design;tmp[,c(1:n.batch)] <- 0;stand.mean <- stand.mean+t(tmp%*%B.hat)}
s.data <- (dat-stand.mean)/(sqrt(var.pooled)%*%t(rep(1,n.array)))
##Get regression batch effect parameters
cat("Fitting L/S model and finding priors\n")
batch.design <- design[,1:n.batch]
if (!NAs){
gamma.hat <- solve(t(batch.design)%*%batch.design)%*%t(batch.design)%*%t(as.matrix(s.data))
} else{
gamma.hat=apply(s.data,1,Beta.NA,batch.design)
}
delta.hat <- NULL
for (i in batches){
delta.hat <- rbind(delta.hat, na.omit(rowVars(s.data[,i])))
}
##Find Priors
gamma.bar <- rowMeans(gamma.hat)
t2 <- rowVars(gamma.hat)
a.prior <- apply(delta.hat, 1, aprior)
b.prior <- apply(delta.hat, 1, bprior)
##Plot empirical and parametric priors
if (prior.plots & par.prior){
par(mfrow=c(2,2))
tmp <- density(gamma.hat[1,])
plot(tmp, type='l', main="Density Plot")
xx <- seq(min(tmp$x), max(tmp$x), length=100)
lines(xx,dnorm(xx,gamma.bar[1],sqrt(t2[1])), col=2)
qqnorm(gamma.hat[1,])
qqline(gamma.hat[1,], col=2)
tmp <- density(delta.hat[1,])
invgam <- 1/rgamma(ncol(delta.hat),a.prior[1],b.prior[1])
tmp1 <- density(invgam)
plot(tmp, typ='l', main="Density Plot", ylim=c(0,max(tmp$y,tmp1$y)))
lines(tmp1, col=2)
qqplot(delta.hat[1,], invgam, xlab="Sample Quantiles", ylab='Theoretical Quantiles')
lines(c(0,max(invgam)),c(0,max(invgam)),col=2)
title('Q-Q Plot')
}
##Find EB batch adjustments
gamma.star <- delta.star <- NULL
if(par.prior){
cat("Finding parametric adjustments\n")
for (i in 1:n.batch){
temp <- it.sol(s.data[,batches[[i]]],gamma.hat[i,],
delta.hat[i,],gamma.bar[i],t2[i],a.prior[i],b.prior[i])
gamma.star <- rbind(gamma.star,temp[1,])
delta.star <- rbind(delta.star,temp[2,])
}
} else{
cat("Finding nonparametric adjustments\n")
for (i in 1:n.batch){
temp <- int.eprior(as.matrix(s.data[,batches[[i]]]),gamma.hat[i,],delta.hat[i,])
gamma.star <- rbind(gamma.star,temp[1,])
delta.star <- rbind(delta.star,temp[2,])
}
}
### Normalize the Data ###
cat("Adjusting the Data\n")
bayesdata <- s.data
j <- 1
for (i in batches){
bayesdata[,i] <- (bayesdata[,i]-t(batch.design[i,]%*%gamma.star))/(sqrt(delta.star[j,])%*%t(rep(1,n.batches[j])))
j <- j + 1
}
bayesdata <- (bayesdata*(sqrt(var.pooled)%*%t(rep(1,n.array))))+stand.mean
if(any(is.na(bayesdata))){
NAs <- Index.NA(bayesdata, by = "row")
bayesdata[NAs, ] <- dat[NAs, ]
}
return(bayesdata)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.